Caristi fixed point theorem

Caristi fixed point theorem

In mathematics, the Caristi fixed point theorem (also known as the Caristi-Kirk fixed point theorem) generalizes the Banach fixed point theorem for maps of a complete metric space into itself. Caristi's fixed point theorem is a variation of the "ε"-variational principle of Ekeland (1974, 1979). Moreover, the conclusion of Caristi's theorem is equivalent to metric completeness, as proved by Weston (1977). The original result is due to the mathematicians James Caristi and William Arthur Kirk.

tatement of the theorem

Let ("X", "d") be a complete metric space. Let "T" : "X" → "X" be a continuous function from "X" into itself, and let "f" : "X" → [0, +∞) be a lower semicontinuous function from "X" into the non-negative real numbers. Suppose that, for all points "x" in "X",

:d ig( x, T(x) ig) leq f(x) - f ig( T(x) ig).

Then "T" has a fixed point in "X", i.e. a point "x"0 such that "T"("x"0) = "x"0.

Generalisations

There are many generalisations of Caristi's theorem; some are given below. In the following, as above, ("X", "d") is a complete metric space with a function "T" : "X" → "X" and a lower semicontinuous function "f" : "X" → [0, +∞).

* (Bae, Cho and Yeom (1994)) Let "c" : [0, +∞) → [0, +∞) be upper semicontinuous from the right, and suppose that, for all "x" in "X",

::d ig( x, T(x) ig) leq max left{ c(f(x)), c(f(T(x))) ight} left( f(x) - f(T(x)) ight).

: Then "T" has a fixed point in "X".

* (Bae, Cho and Yeom (1994)) Let "c" : [0, +∞) → [0, +∞) be non-decreasing. Assume that either

::d ig( x, T(x) ig) leq max c(f(x)) left( f(x) - f(T(x)) ight) mbox{ for all } x in X

: or

::d ig( x, T(x) ig) leq max c(f(T(x))) left( f(x) - f(T(x)) ight) mbox{ for all } x in X.

: Then "T" has a fixed point in "X".

* (Bae (2003)) Let "c" : [0, +∞) → [0, +∞) be upper semicontinuous. Suppose that, for all "x" in "X", both "d"("x", "T"("x")) ≤ "f"("x") and

::d ig( x, T(x) ig) leq c ig( d(x, T(x)) ig) ig( f(x) - f(T(x)) ig).

: Then "T" has a fixed point in "X".

References

* cite journal
author = Bae, J. S. and Cho, E. W. and Yeom, S. H.
title = A generalization of the Caristi-Kirk fixed point theorem and its applications to mapping theorems
journal = J. Korean Math. Soc.
volume = 31
year = 1994
issue = 1
pages = 29–48
issn = 0304-9914

* cite journal
last = Bae
first = Jong Sook
title = Fixed point theorems for weakly contractive multivalued maps
journal = J. Math. Anal. Appl.
volume = 284
year = 2003
issue = 2
pages = 690–697
issn = 0022-247X
doi = 10.1016/S0022-247X(03)00387-1

* cite journal
last = Caristi
first = James
title = Fixed point theorems for mappings satisfying inwardness conditions
journal = Trans. Amer. Math. Soc.
volume = 215
year = 1976
pages = 241–251
issn = 0002-9947
doi = 10.2307/1999724

* cite journal
last = Ekeland
first = Ivar
title = On the variational principle
journal = J. Math. Anal. Appl.
volume = 47
year = 1974
pages = 324–353
issn = 0022-247x

* cite journal
last = Ekeland
first = Ivar
title = Nonconvex minimization problems
journal = Bull. Amer. Math. Soc. (N.S.)
volume = 1
year = 1979
issue = 3
pages = 443–474
issn = 0002-9904
doi = 10.1090/S0273-0979-1979-14595-6

* cite journal
last = Weston
first = J. D.
title = A characterization of metric completeness
journal = Proc. Amer. Math. Soc.
volume = 64
year = 1977
issue = 1
pages = 186–188
issn = 0002-9939
doi = 10.2307/2041008


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Fixed point theorem — In mathematics, a fixed point theorem is a result saying that a function F will have at least one fixed point (a point x for which F ( x ) = x ), under some conditions on F that can be stated in general terms. Results of this kind are amongst the …   Wikipedia

  • Théorèmes de point fixe — En analyse, un théorème de point fixe est un résultat qui permet d affirmer qu une fonction f admet sous certaines conditions un point fixe. Ces théorèmes se révèlent être des outils très utiles en mathématiques, principalement dans le domaine de …   Wikipédia en Français

  • Theoremes de point fixe — Théorèmes de point fixe En analyse, un théorème de point fixe est un résultat qui permet d affirmer qu une fonction f admet sous certaines conditions un point fixe. Ces théorèmes se révèlent être des outils très utiles en mathématiques,… …   Wikipédia en Français

  • Théorème du point fixe — Théorèmes de point fixe En analyse, un théorème de point fixe est un résultat qui permet d affirmer qu une fonction f admet sous certaines conditions un point fixe. Ces théorèmes se révèlent être des outils très utiles en mathématiques,… …   Wikipédia en Français

  • Liste de théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • Mohamed Amine Khamsi — is an American/Moroccan mathematician. He was born in Morocco in 1959. His research interests include nonlinear functional analysis, the fixed point theory and metric spaces. In particular, he has made notable contributions to the fixed point… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • William Arthur Kirk — William Arthur ( Art ) Kirk is an American mathematician. His research interests include nonlinear functional analysis, the geometry of Banach spaces and metric spaces. In particular, he has made notable contributions to the fixed point theory of …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”