Seifert conjecture

Seifert conjecture

In mathematics, the Seifert conjecture states that every nonsingular, continuous vector field on the 3-sphere has a closed orbit. It is named after Herbert Seifert. In a 1950 paper, Seifert asked if such a vector field exists, but did not phrase non-existence as a conjecture. He also established the conjecture for perturbations of the Hopf fibration.

The conjecture was disproven in 1974 by Paul Schweitzer, who exhibited a C^1 counterexample. Schweitzer's construction was then modified by Jenny Harrison in 1988 to make a C^{2+delta} counterexample for some delta > 0. The existence of smoother counterexamples remained an open question until 1993 when Krystyna Kuperberg constructed a very different C^infty counterexample. Later this construction was shown to have real analytic and piecewise linear versions.

References

*V. Ginzburg and B. Gürel, " [http://front.math.ucdavis.edu/math.DG/0110047 A C^2-smooth counterexample to the Hamiltonian Seifert conjecture in R^4] ", Ann. of Math. (2) 158 (2003), no. 3, 953--976
*J. Harrison, "C^2 counterexamples to the Seifert conjecture", Topology 27 (1988), no. 3, 249--278.
*G. Kuperberg "A volume-preserving counterexample to the Seifert conjecture", Comment. Math. Helv. 71 (1996), no. 1, 70--97.
*K. Kuperberg "A smooth counterexample to the Seifert conjecture", Ann. of Math. (2) 140 (1994), no. 3, 723--732.
*G. Kuperberg and K. Kuperberg, " [http://front.math.ucdavis.edu/math.DS/9802040 Generalized counterexamples to the Seifert conjecture] ", Ann. of Math. (2) 143 (1996), no. 3, 547--576.
*H. Seifert, "Closed integral curves in 3-space and isotopic two-dimensional deformations", Proc. Amer. Math. Soc. 1, (1950). 287--302.
*P. A. Schweitzer, "Counterexamples to the Seifert conjecture and opening closed leaves of foliations", Ann. of Math. (2) 100 (1974), 386--400.

Further reading

*K. Kuperberg, " [http://www.ams.org/notices/199909/fea-kuperberg.pdf Aperiodic dynamical systems] ". Notices Amer. Math. Soc. 46 (1999), no. 9, 1035--1040.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Conjecture de géométrisation — En mathématiques, et plus précisément en géométrie, la conjecture de géométrisation de Thurston affirme que les variétés compactes de dimension 3 peuvent être décomposées en sous variétés admettant l une des huit structures géométriques appelées… …   Wikipédia en Français

  • Seifert fiber space — A Seifert fiber space is a 3 manifold together with a nice decomposition as a disjoint union of circles. In other words it is a S^1 bundle (circle bundle) over a 2 dimensional orbifold. Most small 3 manifolds are Seifert fiber spaces, and they… …   Wikipedia

  • Herbert Seifert — Herbert Karl Johannes Seifert (May 27, 1907 – October 1, 1996) was a German mathematician known for his work in topology. He was born in Bernstadt, but soon moved to Bautzen, where he attended primary school at the Knabenbürgerschule, and… …   Wikipedia

  • Geometrization conjecture — Thurston s geometrization conjecture states that compact 3 manifolds can be decomposed canonically into submanifolds that have geometric structures. The geometrization conjecture is an analogue for 3 manifolds of the uniformization theorem for… …   Wikipedia

  • Virtually fibered conjecture — In the mathematical subfield of 3 manifolds, the virtually fibered conjecture of Thurston states: every closed, irreducible, atoroidal 3 manifold with infinite fundamental group has a finite cover which is a surface bundle over the circle. A 3… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Гипотеза Зейферта — в теории динамических систем утверждала, что у векторного поля без особых точек на трёхмерной сфере найдётся периодическая траектория. В своей работе 1950 года Герберт Зейферт доказал[1], что периодическими траекториями обладают гладкие векторные …   Википедия

  • mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… …   Universalium

  • Jenny Harrison — is a professor of mathematics at UC Berkeley. She specializes in geometric analysis and areas in the intersection of algebra, geometry, and geometric measure theory. Her most important contribution to mathematics has come in recent years when she …   Wikipedia

  • Krystyna Kuperberg — Infobox Scientist name = Krystyna M. Kuperberg image width = 200px caption = Prof. Krystyna Kuperberg giving a lecture during Spring Topology Conference 2004 , Birmingham (Alabama) birth date = Birth date and age|1944|7|17 birth place = residence …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”