Hankel contour

Hankel contour

In mathematics, a Hankel contour is a path in the complex plane which extends from [∞,δ] , around the origin counter clockwise and back to [∞,−δ] , where δ is an arbitrarily small positive number. The contour thus remains arbitrarily close to the real axis but without crossing the real axis except for negative values of "x".

Use of Hankel contours is one of the methods of contour integration. This type of path for contour integrals was first used by Hermann Hankel in his investigations of the Gamma function.

The mirror image extending from −∞, circling the origin clockwise, and returningto −∞ is also called a Hankel contour.

References

*


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Hermann Hankel — (February 14, 1839 August 29, 1873) was a German mathematician who was born in Halle, Germany and died in Schramberg (near Tübingen), Germany.He studied and worked with, among others, Möbius, Riemann, Weierstrass and Kronecker.Herman Hankel is… …   Wikipedia

  • Fonction polylogarithme —  Les polylogarithmes ne doivent pas être confondus avec les fonctions polylogarithmiques, ni avec l écart du logarithme intégral qui possède une notation similaire. La fonction polylogarithme (aussi connue sous le nom de fonction de… …   Wikipédia en Français

  • Polylogarithm — Not to be confused with polylogarithmic. In mathematics, the polylogarithm (also known as Jonquière s function) is a special function Lis(z) that is defined by the infinite sum, or power series: It is in general not an elementary function, unlike …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Bessel function — In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli and generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel s differential equation: for an arbitrary real or complex number α (the order of the …   Wikipedia

  • Fonction Polylogarithme — La fonction polylogarithme (aussi connue sous le nom de fonction de Jonquière) est une fonction remarquable et peut être définie pour tout s et |z|<1 par : Le paramètre s et l argument z sont pris sur l ensemble , l ensemble des nombres… …   Wikipédia en Français

  • Polylogarithme — Fonction polylogarithme La fonction polylogarithme (aussi connue sous le nom de fonction de Jonquière) est une fonction remarquable et peut être définie pour tout s et |z|<1 par : Le paramètre s et l argument z sont pris sur l ensemble ,… …   Wikipédia en Français

  • Propagator — This article is about Quantum field theory. For plant propagation, see Plant propagation. Quantum field theory …   Wikipedia

  • Reciprocal Gamma function — In mathematics, the reciprocal Gamma function is the function:f(z) = frac{1}{Gamma(z)},where Gamma(z) denotes the Gamma function. Since the Gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire… …   Wikipedia

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”