Fractional quantum Hall effect

Fractional quantum Hall effect

The fractional quantum Hall effect (FQHE) is a physical phenomenon in which a certain system behaves as if it were composed of particles with charge smaller than the elementary charge. Its discovery and explanation were recognized by the 1998 Nobel Prize in Physics.

Introduction

The fractional quantum Hall effect (FQHE) is a manifestation of simple collective behaviour in a two-dimensional system of strongly interacting electrons. At particular magnetic fields, the electron gas condenses into a remarkable state with liquid-like properties. This state is very delicate, requiring high quality material with a low carrier concentration, and extremely low temperatures. As in the integer quantum Hall effect, a series of plateaus forms in the Hall resistance. Each particular value of the magnetic field corresponds to a filling factor (the ratio of electrons to magnetic flux quanta)

:" u = p/q",

where p and q are integers with no common factors. Here "q" turns out to be an odd number with the exception of two enigmatic filling factors 5/2 and 7/2. The principal series of such fractions are

:{1over 3}, {2over 5}, {3over 7} etc.,

and

:{2over3}, {3over 5}, {4over 7}, etc.

There are two main theories of the FQHE.

*Fractionally-charged quasiparticles: this theory, proposed by Laughlin, hides the interactions by constructing a set of quasiparticles with charge e^*={eover q}, where the fraction is {pover q} as above.

*Composite Fermions: this theory was proposed by Jain, and Halperin, Lee and Read. In order to hide the interactions, it attaches two (or, in general, an even number) flux quanta {hover e} to each electron, forming integer-charged quasiparticles called composite fermions. The fractional states are mapped to the integer QHE. This makes electrons at a filling factor 1/3, for example, behave in the same way as at filing factor 1. A remarkable result is that filling factor 1/2 corresponds to zero magnetic field. Experiments support this.

The FQHE was experimentally discovered in 1982 by Daniel Tsui and Horst Störmer, in experiments performed on gallium arsenide heterostructures developed by Arthur Gossard. The effect was explained by Robert B. Laughlin in 1983, using a novel quantum liquid phase that accounts for the effects of interactions between electrons. Tsui, Störmer, and Laughlin were awarded the 1998 Nobel Prize for their work. Although it was generally assumed that the discrete resistivity jumps found in the Tsui experiment were due to the presence of fractional charges (i.e., due to the emergence of quasiparticles with charges smaller than an electron charge), more direct observation of these charges came later (see below).

Fractionally charged quasiparticles are neither bosons nor fermions and exhibit anyonic statistics. The fractional quantum Hall effect continues to be influential in theories about topological order. Certain fractional quantum Hall phases appear to have the right properties for building a topological quantum computer.

Other evidence for fractionally-charged quasiparticles

Apart from the FQHE itself, further evidence has continued emerged that specifically supports the understanding that there are fractionally-charged quasiparticles in an electron gas under FQHE conditions.

In 1995, the fractional charge of Laughlin quasiparticles was measured directly in a quantum antidot electrometer at Stony Brook University, New York. [ [http://dx.doi.org/10.1126/science.267.5200.1010 "Measurement of fractional charge" (Science Report) 1995] . See also [http://quantum.physics.sunysb.edu/index.html Description on the researcher's website] .] In 1997, two groups of physicists at the Weizmann Institute of Science in Rehovot, Israel, and at the Commissariat à l'énergie atomique laboratory near Paris, detected such quasiparticles carrying an electric current, through measuring quantum shot noise. [ [http://physicsweb.org/article/news/1/10/7/1 "Fractional charge carriers discovered" - Physics Web article 1997-10-24] .] [R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin and D. Mahalu, Nature 389, 162-164 (1997) doi|10.1038/38241]

See also

* Laughlin wavefunction

References

* [http://www.sp.phy.cam.ac.uk/SPWeb/research/FQHE.html University of Cambridge, Semiconductor Physics Group Research] .
* D.C. Tsui, H.L. Stormer, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982) doi|10.1103/PhysRevLett.48.1559
* R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983) doi|10.1103/PhysRevLett.50.1395


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Quantum Hall effect — The quantum Hall effect (or integer quantum Hall effect) is a quantum mechanical version of the Hall effect, observed in two dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall conductivity σ… …   Wikipedia

  • Quantum field theory — In quantum field theory (QFT) the forces between particles are mediated by other particles. For instance, the electromagnetic force between two electrons is caused by an exchange of photons. But quantum field theory applies to all fundamental… …   Wikipedia

  • Effet Hall quantique fractionnaire — L effet Hall quantique fractionnaire (en anglais, fractional quantum Hall effect : FQHE) est une version en mécanique quantique de l effet Hall, mise en évidence dans les années 1980 par Horst Störmer et Daniel Tsui et explicitée par Robert… …   Wikipédia en Français

  • Topological quantum computer — A topological quantum computer is a theoretical quantum computer that employs two dimensional quasiparticles called anyons, whose world lines cross over one another to form braids in a three dimensional spacetime (i.e., one temporal plus two… …   Wikipedia

  • Magnetic flux quantum — Values (CODATA 2006)[1] Units Φ0 2.067 833 667(52)×10−15 Wb KJ 483 597.891(12)×109 Hz/V KJ–90 483 597.9 …   Wikipedia

  • Efecto Hall — Diagrama del efecto Hall, mostrando el flujo de electrones. (en vez de la corriente convencional). Leyenda: 1. Electrones 2. Sensor o sonda Hall 3. Imanes 4. Campo magnético 5. Fuente de energía Descripción En la imagen A, una carga negativa… …   Wikipedia Español

  • Quanten-Hall-Effekt — Der Quanten Hall Effekt (kurz: QHE) äußert sich dadurch, dass bei tiefen Temperaturen und starken Magnetfeldern die senkrecht zu einem Strom auftretende Spannung nicht wie beim klassischen Hall Effekt linear mit dem Magnetfeld anwächst, sondern… …   Deutsch Wikipedia

  • Fraktionierter Quanten-Hall-Effekt — Der Quanten Hall Effekt (kurz: QHE) äußert sich darin, dass bei tiefen Temperaturen und starken Magnetfeldern die senkrecht zu einem Strom erzeugte Hall Spannung nicht linear mit dem Magnetfeld anwächst wie beim klassischen Hall Effekt, sondern… …   Deutsch Wikipedia

  • Quantisierter Hall-Effekt — Der Quanten Hall Effekt (kurz: QHE) äußert sich darin, dass bei tiefen Temperaturen und starken Magnetfeldern die senkrecht zu einem Strom erzeugte Hall Spannung nicht linear mit dem Magnetfeld anwächst wie beim klassischen Hall Effekt, sondern… …   Deutsch Wikipedia

  • Josephson effect — Josephson junction array chip developed by NIST as a standard volt The Josephson effect is the phenomenon of supercurrent (i.e. a current that flows indefinitely long without any voltage applied) across two superconductors coupled by a weak link …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”