Sacks spiral

Sacks spiral

Robert Sacks devised the Sacks spiral, a variant of the Ulam spiral, in 1994. It differs from Ulam's in three ways: it places points on an Archimedean spiral rather than the square spiral used by Ulam, it places zero in the center of the spiral, and it makes a full rotation for each perfect square while the Ulam spiral places two squares per rotation. Certain curves originating from the origin appear to be unusually dense in prime numbers; one such curve, for instance, contains the numbers of the form "n"2 + "n" + 41, a famous prime-rich polynomial discovered by Leonhard Euler in 1774. The extent to which the number spiral's curves are predictive of large primes and composites remains unknown.

A closely related spiral, described by harvtxt|Hahn|2008, places each integer at a distance from the origin equal to its square root, at a unit distance from the previous integer. It also approximates an Archimedean spiral, but it makes less than one rotation for every three squares.

References

*citation|last=Hahn|first=Harry K.|title=The distribution of prime numbers on the square root spiral|year=2008|id=arxiv|0801.1441.

External links

* [http://www.numberspiral.com Robert Sacks' web site]
* [http://naturalnumbers.org/sparticle.html Article about the Sacks Number Spiral]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Ulam spiral — The Ulam spiral to 150 iterations. Red dots represent prime numbers; blue dots represent composite numbers, with the size of the dot indicating the degree of compositeness. The Ulam spiral, or prime spiral (in other languages also called the Ulam …   Wikipedia

  • Spirale de Sacks — Pour les articles homonymes, voir Sacks. La sprirale de Sacks, créée par Robert Sacks en 1994, est une variante de la spirale d Ulam. Elle diffère de la spirale d Ulam de 3 manières : Elle place les points sur une spirale d Archimède plutôt… …   Wikipédia en Français

  • Espiral de Sacks — Saltar a navegación, búsqueda Espiral de Sacks, mostrando ciertos patrones que poseen los números primos. La espiral de Sacks es una variante de la espiral de Ulam y fue descubierta en 1994 por Robert Sacks. Se diferencia de la espiral de Ulam… …   Wikipedia Español

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • List of Ashes to Ashes characters — This is a list of fictional characters that have appeared in BBC One s science fiction/police procedural drama, Ashes to Ashes. Contents 1 Main characters 1.1 Gene Hunt 1.2 Alex Drake …   Wikipedia

  • New Village Leadership Academy — New Village Academy Logo of organization Spiral Up! (motto) Location 23679 Calabasas Road, Suite 414 Calabasas, California …   Wikipedia

  • basketry — /bas ki tree, bah ski /, n. 1. baskets collectively; basketwork. 2. the art or process of making baskets. [1850 55; BASKET + RY] * * * Art and craft of making containers and other objects from interwoven flexible fibres such as grasses, twigs,… …   Universalium

  • Hendrick Motorsports — Owner(s) Rick Hendrick Base Concord, North Carolina Series Sprint Cup Series Race drivers 5. Mark M …   Wikipedia

  • List of Eyeshield 21 characters — Contents 1 Main characters 2 Opponents 2.1 Ojo White Knights 2.1.1 Seijuro Shin 2.1.2 Haruto …   Wikipedia

  • Southeast Asian arts — Literary, performing, and visual arts of Myanmar (Burma), Thailand, Laos, Cambodia, Vietnam, Malaysia, Singapore, and the Philippines. The classical literatures of Southeast Asia can be divided into three major regions: the Sanskrit region of… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”