- Selenium-79
Selenium-79 is a
radioisotope ofselenium present inspent nuclear fuel and the wastes resulting from reprocessing this fuel. It is one of only 7long-lived fission product s. Its yield is low (about 0.04%) as it it is near the lower end of the mass range forfission products . Itshalflife has been variously reported as 650,000 years, 65,000 years, 1.13 million years, 480,000 years, and most recently, 295,000 years. [ [http://www.iop.org/EJ/abstract/0256-307X/18/6/311 Remeasurement of the Half-Life of 79Se with the Projectile X-Ray Detection Method ] ]Se-79 decays by emitting a
beta particle with no attendantgamma radiation . The lowspecific activity and relatively low energy of its beta particle have been said to limit the radioactive hazards of this isotope. [ [http://www.ead.anl.gov/pub/doc/selenium.pdf ANL factsheet] ]Performance assessment calculations for the Belgian
deep geological repository estimated 79Se may be the major contributor to activity release in terms ofbecquerel s (decays per second), "attributable partly to the uncertainties about its migration behaviour in the Boom Clay and partly to its conversion factor in the biosphere." (p. 169)http://www.nirond.be/engels/PDF/Safir2_apercutech_eng.pdf Marivoet et al. (2001) Safir-2 report. Ondraf/Niras] . However, "calculations for the Belgian safety assessments use a half-life of 65 000 years" (p. 177), much less than the currently estimated halflife, and "the migration parameters ... have been estimated very cautiously for 79Se." (p. 179)Neutron absorption cross section s for 79Se have been estimated at 50 barns forthermal neutrons and 60.9 barns forresonance integral . [http://www-nds.iaea.org/j33/data/comments/za034079.html]Se-80 and Se-82 have higher fission yields, about 20 times the yield of Se-79 in the case of U-235, 6 times in the case of Pu-239 or U-233, and 14 times in the case of Pu-241. [ [http://www-nds.iaea.org/sgnucdat/c1.htm Nuclear Data for Safeguards ] ]
Mobility of selenium in the environment
Due to redox-disequilibrium, selenium could be very reluctant to chemical reduction and would be released from the waste (spent fuel or vitrified waste) as soluble selenate, a species not sorbed onto clay minerals. Without solubility limit and retardation for aqueous selenium, the dose of 79Se is comparable to that of 129I. Moreover, selenium is an essential micronutrient for many organisms (protection of cell membrane against oxidative damages) and can be easily bioconcentrated in the food chain. In the presence of nitrate, even reduced forms of selenium could be easily oxidised and mobilised. [Cite journal
last = Wright
first = Winfield G.
title = Oxidation and mobilization of selenium by nitrate in irrigation drainage
journal = J. Environ. Qual.
volume = 28
issue = 4
pages = 1182-1187
accessdate = 2008-05-11
date = 1999-07-01
url = http://jeq.scijournals.org/cgi/content/abstract/joenq;28/4/1182]References
ee also
*
Isotopes of selenium
* [http://www.ead.anl.gov/pub/doc/selenium.pdf ANL factsheet]
* [http://www.rsc.org/publishing/journals/JA/article.asp?doi=b209253k Journal of Analytical Atomic Spectrometry]
Wikimedia Foundation. 2010.