- Implicant
In
Boolean logic , an implicant is a "covering" (sum term or product term) of one or moreminterms in asum of products (ormaxterms in aproduct of sums ) of a boolean function. Formally, aproduct term "P" in asum of products is an implicant of theBoolean function "F" if "P" implies "F". More precisely:: "P" implies "F" (and thus is an implicant of "F") if "F" also takes the value 1 whenever "P" equals 1.where
* "F" is aBoolean function of "n" variables.
* "P" is aproduct term .This means that PF with respect to the natural ordering of the Boolean space. For instance, the function
:
is implied by , by , by , by and many others; these are the implicants of .
Prime implicant
A prime implicant of a function is an implicant that cannot be covered by a more general (more reduced - meaning with fewer
literals ) implicant.W.V. Quine defined a "prime implicant" of "F" to be an implicant that is minimal - that is, if the removal of any literal from "P" results in a non-implicant for "F". Essential prime implicants are prime implicants that cover an output of the function that no other prime implicant (or sum thereof) is able to cover.Using the example above, one can easily see that while (and others) is a prime implicant, and are not. From the latter, multiple literals can be removed to make it prime:
*, and can be removed, yielding .
*Alternatively, and can be removed, yielding .
*Finally, and can be removed, yielding .The process of removing literals from a Boolean term is called expanding the term. Expanding by one literal doubles the number of input combinations for which the term is true (in binary Boolean algebra). Using the example function above, we may expand to or to without changing the cover of . [De Micheli, Giovanni. "Synthesis and Optimization of Digital Circuits". McGraw-Hill, Inc., 1994]
The sum of all prime implicants of a Boolean function is called the complete sum of that function.
ee also
*
Quine-McCluskey algorithm
*Karnaugh map References
External links
[http://www.cs.ualberta.ca/~amaral/courses/329/webslides/Topic4-KarnaughMaps/sld021.htm Slides explaining implicants, prime implicants and essential prime implicants]
Wikimedia Foundation. 2010.