- Berkeley Packet Filter
The Berkeley Packet Filter or BPF provides, on some
Unix-like systems, a raw interface to data link layers, permitting raw link-layer packets to be sent and received. In addition, if the driver for the network interface supportspromiscuous mode , it allows the interface to be put into that mode, so that all packets on the network, even those destined for other hosts, can be received.In addition, it supports "filtering" packets, so that only "interesting" packets can be supplied to the software using BPF; this can avoid copying "uninteresting" packets from the
operating system kernel to software running in user mode, reducing the CPU requirement to capture packets and the buffer space required to avoid dropping packets. BPF's filtering capabilities are implemented as an interpreter for amachine language for the BPFvirtual machine ; programs in that language can fetch data from the packet, performarithmetic operations on data from the packet, and compare the results against constants or against data in the packet or testbit s in the results, accepting or rejecting the packet based on the results of those tests. On some platforms, includingFreeBSD andWinPcap , just-in-time compilation is used to convert virtual machine instructions into native code in order to further avoid overhead.Kernel-mode interpreters for that same virtual machine language are used in raw data link layer mechanisms in other operating systems, such as
Tru64 Unix , and for socket filters inLinux and in the WinPcap packet capture mechanism.A user-mode interpreter for it is provided with the libpcap/WinPcap implementation of the
pcap application programming interface (API), so that, when capturing packets on systems without kernel-mode support for that filtering mechanism, packets can be filtered in user mode; code using the pcap API will work on both types of systems, although, on systems where the filtering is done in user mode, all packets, including those that will be filtered out, are copied from the kernel to user space. That interpreter can also be used when reading a file containing packets captured using pcap.BPF is sometimes used to refer just to the filtering mechanism, rather than to the entire interface.
BSD kernels implement routines such as
bpf_mtap()
andbpf_tap()
, with some wrapping them in macros such asBPF_MTAP()
andBPF_TAP()
, which are called by network interface drivers (and pseudo-drivers) to deliver incoming and outgoing packets to the BPF mechanism.In 2007, Watson and Peron added zero-copy buffer extensions to the BPF implementation in the
FreeBSD operating system, allowing kernel packet capture in the device driver interrupt handler to write directly to user process memory in order to avoid the requirement for two copies for all packet data received via the BPF device. While one copy remains in the receipt path for user processes, this preserves the independence of different BPF device consumers, as well as allowing the packing of headers into the BPF buffer rather than copying complete packet data.External links
* [http://download.at.kde.org/pub/tcpdump/papers/bpf-usenix93.pdf 1993 USENIX paper that describes BPF] (PDF)
* [http://www.watson.org/~robert/freebsd/2007asiabsdcon/20070309-devsummit-zerocopybpf.pdf FreeBSD Developer Summit presentation describing Zero-copy BPF] (PDF)
* [http://www.FreeBSD.org/cgi/man.cgi?query=bpf&apropos=0&sektion=0&manpath=FreeBSD+8-current&format=html FreeBSD 8.x BPF(4) man page, including description of zero-copy BPF buffers]
Wikimedia Foundation. 2010.