Hexacode

Hexacode

In coding theory, the hexacode is length 6 linear code of dimension 3 over the Galois field GF(4)={0,1,omega,omega^2} of 4 elements defined by :H={(a,b,c,f(1),f(omega),f(omega^2) : f(x):=ax^2+bx+c; a,b,cin GF(4)}.Then H contains 45 codewords of weight 4, 18 codewords of weight 6 andthe zero word. The full automorphism group of the hexacode is 3.S_6. The hexacode can be used to describe the Miracle Octad Generatorof R. T. Curtis.

References

*cite book | first = John H. | last = Conway | authorlink = John Horton Conway | coauthors = Sloane, Neil J. A. | year = 1998 | title = Sphere Packings, Lattices and Groups | edition = (3rd ed.) | publisher = Springer-Verlag | location = New York | id = ISBN 0-387-98585-9


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • hexacode — noun A particular linear code of length 6 and dimension 3 …   Wiktionary

  • Miracle Octad Generator — In mathematics, the Miracle Octad Generator, or MOG, is a mathematical tool introduced by Curtis (1976) for manipulating the Mathieu groups, binary Golay code and Leech lattice. Contents 1 Description 2 Golay code 3 MiniMOG …   Wikipedia

  • Mathieu group — Group theory Group theory …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”