Sylvester equation

Sylvester equation

In control theory, the Sylvester equation is the matrix equation of the form:A X + X B = C,where A,B,X,C are n imes n matrices.

Existence and uniqueness of the solution

Using the Kronecker product notation and the vectorization operator operatorname{vec}, we can rewrite the equation in the form: (I_n otimes A + B^T otimes I_n) operatorname{vec}X = operatorname{vec}C,where I_n is the n imes n identity matrix. In this form, the Sylvester equation can be seen as a linear system of dimension n^2 imes n^2. [Rewriting the equation in this form is not advised for the numerical solution, though, since the linear system version is costly to solve and can be ill-conditioned]

If A=ULU^{-1} and B^T=VMV^{-1} are the Jordan canonical forms of A and B^T, and lambda_i and mu_j are their eigenvalues, one can write:I_n otimes A + B^T otimes I_n = (Uotimes V)(I_n otimes L + M otimes I_n)(U otimes V)^{-1}.Since (I_n otimes L + M otimes I_n) is upper triangular with diagonal elements lambda_i+mu_j, the matrix on the left hand side is singular if and only if there exist i and j such that lambda_i=-mu_j.

Therefore, we have proved that the Sylvester equation has a unique solution if and only if A and -B have no common eigenvalues.

Numerical solutions

A classical algorithm for the numerical solution of the Sylvester equation is the "Bartels--Stewart algorithm", which consists in transforming A and B into Schur form by a QR algorithm, and then solving the resulting triangular system via back-substitution. This algorithm, whose computational cost is O(n^3) arithmetical operations, is used, among others, by LAPACK, Matlab and GNU Octave (in the syl function).

ee also

* Lyapunov equation

References

R. H. Bartels and G. W. Stewart, Solution of the matrix equation $AX +XB = C$, "Comm. ACM", 15 (1972), pp. 820 – 826.

Notes


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Sylvester's formula — In matrix theory, Sylvester s formula, named after James Joseph Sylvester, expresses matrix functions in terms of the eigenvalues and eigenvectors of a matrix. It is only valid for diagonalizable matrices; an extension due to Buchheim covers the… …   Wikipedia

  • Sylvester, James Joseph — ▪ English mathematician born , September 3, 1814, London, England died March 15, 1897, London       British mathematician who, with Arthur Cayley (Cayley, Arthur), was a cofounder of invariant theory, the study of properties that are unchanged… …   Universalium

  • Sylvester's sequence — In number theory, Sylvester s sequence is a sequence of integers in which each member of the sequence is the product of the previous members, plus one. The first few terms of the sequence are::2, 3, 7, 43, 1807, 3263443, 10650056950807,… …   Wikipedia

  • Sylvester matrix — In mathematics, a Sylvester matrix is a matrix associated to two polynomials that gives us some information about those polynomials. It is named for James Joseph Sylvester.DefinitionFormally, let p and q be two polynomials, respectively of degree …   Wikipedia

  • Lyapunov equation — In control theory, the discrete Lyapunov equation is of the form:A X A^H X + Q = 0where Q is a hermitian matrix. The continuous Lyapunov equation is of form:AX + XA^H + Q = 0.The Lyapunov equation occurs in many branches of control theory, such… …   Wikipedia

  • Matrice De Sylvester — En algèbre linéaire, la matrice de Sylvester de deux polynômes apporte des informations d ordre arithmétique sur ces polynômes. Elle tient son nom de James Joseph Sylvester. Elle sert à la définition du résultant de deux polynômes. Définition… …   Wikipédia en Français

  • Matrice de sylvester — En algèbre linéaire, la matrice de Sylvester de deux polynômes apporte des informations d ordre arithmétique sur ces polynômes. Elle tient son nom de James Joseph Sylvester. Elle sert à la définition du résultant de deux polynômes. Définition… …   Wikipédia en Français

  • Matrice de Sylvester — En algèbre linéaire, la matrice de Sylvester de deux polynômes apporte des informations d ordre arithmétique sur ces polynômes. Elle tient son nom de James Joseph Sylvester. Elle sert à la définition du résultant de deux polynômes. Définition… …   Wikipédia en Français

  • Suite de Sylvester — Démonstration graphique de la convergence vers 1 de la somme 1/2 + 1/3 + 1/7 + 1/43 +... Chaque rang de n carrés de côté 1/n a une aire totale de 1/n ; l ensemble des rangs recouvre exactement un carré plus grand, d aire 1. [Les carrés de… …   Wikipédia en Français

  • Sucesión de Sylvester — Demostración gráfica de la convergencia de la suma a 1. Cada fila de k cuadrados de lado tiene un área total de , y todos los cuadra …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”