Clebsch-Gordan coefficients

Clebsch-Gordan coefficients

In physics, the Clebsch-Gordan coefficients are sets of numbers that arise in angular momentum coupling under the laws of quantum mechanics.

In more mathematical terms, the CG coefficients are used in representation theory, particularly of compact Lie groups, to perform the explicit direct sum decomposition of the tensor product of two irreducible representations into irreducible representations, in cases where the numbers and types of irreducible components are already known abstractly. The name derives from the German mathematicians Alfred Clebsch (1833-1872) and Paul Gordan (1837-1912), who encountered an equivalent problem in invariant theory.

In terms of classical mathematics, the CG coefficients, or at least those associated to the group SO(3), may be defined much more directly, by means of formulae for the multiplication of spherical harmonics. The addition of spins in quantum-mechanical terms can be read directly from this approach. The formulas below use Dirac's bra-ket notation.

Clebsch-Gordan coefficients

Clebsch-Gordan coefficients are the expansion coefficients oftotal angular momentum eigenstates in anuncoupled tensor product basis.

Below, this definition is made precise by defining angular momentumoperators, angular momentum eigenstates, and tensor products of these states.

From the formal definition recursion relations for the Clebsch-Gordan coefficientscan be found. To find numerical values for the coefficients a phase conventionmust be adopted. Below the Condon-Shortley phase convention is chosen.

Angular momentum operators

Angular momentum operators are Hermitian operators j_1, j_2,and j_3 that satisfy the commutation relations: [j_k,j_l] = i sum_{m=1}^3 varepsilon_{klm}j_m,where varepsilon_{klm} is the Levi-Civita symbol. Together thethree components define a vector operator {mathbf j}. Thesquare of the length of {mathbf j} is defined as:mathbf{j}^2 = j_1^2+j_2^2+j_3^2.We also define raising (j_+) and lowering (j_-) operators:j_pm = j_1 pm i j_2. ,

Angular momentum states

It can be shown from the above definitions that mathbf{j}^2 commutes with j_1, j_2and j_3: [mathbf{j}^2, j_k] = 0 mathrm{for} k = 1,2,3When two Hermitian operators commute a common set of eigenfunctions exists.Conventionally mathbf{j}^2 and j_3 are chosen.From the commutation relations the possible eigenvalues can be found.The result is:egin{alignat}{2} mathbf{j}^2 |j,m angle = j(j+1) |j,m angle & ;;; j=0, 1/2, 1, 3/2, 2, ldots\ j_3|j,m angle = m |j,m angle & ;;; m = -j, -j+1, ldots , j.end{alignat}The raising and lowering operators change the value of m: j_pm |j,m angle = C_pm(j,m) |j,mpm 1 anglewith: C_pm(j,m) = sqrt{j(j+1)-m(mpm 1)} = sqrt{(jmp m)(jpm m + 1)}.A (complex) phase factor could be included in the definition of C_pm(j,m)The choice made here is in agreement with the Condon and Shortley phase conventions.The angular momentum states must be orthogonal (because their eigenvalues withrespect to a Hermitian operator are distinct) and they are assumed to be normalized: langle j_1,m_1 | j_2,m_2 angle = delta_{j_1,j_2}delta_{m_1,m_2}.

Tensor product space

Let V_1 be the 2j_1+1 dimensionalvector space spanned by the states:
j_1 m_1 angle,quad m_1=-j_1,-j_1+1,ldots j_1and V_2 the 2j_2+1 dimensionalvector space spanned by:
j_2 m_2 angle,quad m_2=-j_2,-j_2+1,ldots j_2.The tensor product of these spaces, V_{12}equiv V_1otimes V_2,has a (2j_1+1)(2j_2+1) dimensional uncoupled basis:
j_1 m_1 angle|j_2 m_2 angle equiv |j_1 m_1 angle otimes |j_2 m_2 angle, quad m_1=-j_1,ldots j_1, quad m_2=-j_2,ldots j_2.Angular momentum operators acting on V_{12} can be defined by: (j_i otimes 1)|j_1 m_1 angle|j_2 m_2 angle equiv (j_i|j_1m_1 angle) otimes |j_2m_2 angleand: (1 otimes j_i) |j_1 m_1 angle|j_2 m_2 angle equiv |j_1m_1 angle otimes j_i|j_2m_2 angle.Total angular momentum operators are defined by: J_i = j_i otimes 1 + 1 otimes j_iquadmathrm{for}quad i = 1,2,3.The total angular momentum operators satisfy the required commutation relations: [J_k,J_l] = i sum_{m=1}^3 epsilon_{klm}J_mand hence total angular momentum eigenstates exist: egin{align} mathbf{J}^2 |(j_1j_2)JM angle &= J(J+1) |(j_1j_2)JM angle \ J_z |(j_1j_2)JM angle &= M |(j_1j_2)JM angle,quad mathrm{for}quad M=-J,ldots,J. end{align}It can be derived that J must satisfy the triangular condition:
j_1-j_2| leq J leq j_1+j_2.The total number of total angular momentum eigenstates is equal to the dimensionof V_{12}: sum_{J=|j_1-j_2^{j_1+j_2} (2J+1) = (2j_1+1)(2j_2+1).The total angular momentum states form an orthonormal basis of V_{12}: langle J_1 M_1 | J_2 M_2 angle = delta_{J_1J_2}delta_{M_1M_2}.

Formal definition of Clebsch-Gordan coefficients

The total angular momentum states can be expanded in the uncoupled basis:
(j_1j_2)JM angle = sum_{m_1=-j_1}^{j_1} sum_{m_2=-j_2}^{j_2}
j_1m_1 angle|j_2m_2 angle langle j_1m_1j_2m_2|JM angleThe expansion coefficients langle j_1m_1j_2m_2|JM angleare called Clebsch-Gordan coefficients.

Applying the operator: J_3 = j_3 otimes 1 + 1 otimes j_3to both sides of the defining equation shows that the Clebsch-Gordan coefficientscan only be nonzero when:M = m_1 + m_2.,

Recursion relations

Applying the total angular momentum raising and lowering operators: J_pm = j_pm otimes 1 + 1 otimes j_pmto the left hand side of the defining equation gives: J_pm|(j_1j_2)JM angle = C_pm(J,M) |(j_1j_2)JMpm 1 angle = C_pm(J,M)sum_{m_1m_2}|j_1m_1 angle|j_2m_2 angle langle j_1 m_1 j_2 m_2|J Mpm 1 angle.Applying the same operators to the right hand side gives: egin{align} J_pm & sum_{m_1m_2} |j_1m_1 angle|j_2m_2 angle langle j_1m_1j_2m_2|JM angle\ & =sum_{m_1m_2}left [ C_pm(j_1,m_1)|j_1 m_1pm 1 angle |j_2m_2 angle +C_pm(j_2,m_2)|j_1 m_1 angle |j_2 m_2pm 1 angle ight] langle j_1 m_1 j_2 m_2|J M angle \ &= sum_{m_1m_2} |j_1m_1 angle|j_2m_2 angle left [ C_pm(j_1,m_1mp 1) langle j_1 {m_1mp 1} j_2 m_2|J M angle +C_pm(j_2,m_2mp 1) langle j_1 m_1 j_2 {m_2mp 1}|J M angle ight] . end{align}Combining these results gives recursion relations for the Clebsch-Gordancoefficients: C_pm(J,M) langle j_1 m_1 j_2 m_2|J Mpm 1 angle = C_pm(j_1,m_1mp 1) langle j_1 {m_1mp 1} j_2 m_2|J M angle + C_pm(j_2,m_2mp 1) langle j_1 m_1 j_2 {m_2mp 1}|J M angle.Taking the upper sign with M=J gives: 0 = C_+(j_1,m_1-1) langle j_1 {m_1-1} j_2 m_2|J J angle + C_+(j_2,m_2-1) langle j_1 m_1 j_2 m_2-1|J J angle.In the Condon and Shortley phase convention the coefficientlangle j_1 j_1 j_2 J-j_1|J J angle is takenreal and positive. With the last equation all otherClebsch-Gordan coefficients langle j_1 m_1 j_2 m_2|J J anglecan be found. The normalization is fixed by the requirement thatthe sum of the squares, which corresponds to the norm of thestate |(j_1j_2)JJ angle must be one.

The lower sign in the recursion relation can be used to findall the Clebsch-Gordan coefficients with M=J-1.Repeated use of that equation gives all coefficients.

This procedure to find the Clebsch-Gordan coefficients shows thatthey are all real (in the Condon and Shortley phase convention).

Explicit expression

For an explicit expression of the Clebsch-Gordan coefficientsand tables with numerical values see
table of Clebsch-Gordan coefficients.

Orthogonality relations

These are most clearly written down by introducing thealternative notation: langle J M|j_1 m_1 j_2 m_2 angle equiv langle j_1 m_1 j_2 m_2|J M angleThe first orthogonality relation is: sum_{J=|j_1-j_2^{j_1+j_2} sum_{M=-J}^{J} langle j_1 m_1 j_2 m_2|J M angle langle J M|j_1 m_1' j_2 m_2' angle = delta_{m_1,m_1'}delta_{m_2,m_2'}and the second: sum_{m_1m_2} langle J M|j_1 m_1 j_2 m_2 angle langle j_1 m_1 j_2 m_2|J' M' angle = delta_{J,J'}delta_{M,M'}.

pecial cases

For J=0 the Clebsch-Gordan coefficients are given by: langle j_1 m_1 j_2 m_2 | 0 0 angle = delta_{j_1,j_2}delta_{m_1,-m_2}frac{(-1)^{j_1-m_1{sqrt{2j_2+1.For J=j_1+j_2 and M=J we have: langle j_1 j_1 j_2 j_2 | (j_1+j_2) (j_1+j_2) angle = 1.


ymmetry properties

:egin{align}langle j_1 m_1 j_2 m_2|J M angle \& = (-1)^{j_1+j_2-J}langle j_1, {-m_1} j_2 , {-m_2}|J , {-M} angle \& = (-1)^{j_1+j_2-J} langle j_2 m_2 j_1 m_1|J M angle \& = (-1)^{j_1 - m_1} sqrt{frac{2 J +1}{2 j_2 +1 langle j_1 m_1 J , {-M}| j_2,{-m_2} angle \& = (-1)^{j_2 + m_2} sqrt{frac{2 J +1}{2 j_1 +1 langle J , {-M} j_2 m_2| j_1 , {-m_1} angle \& = (-1)^{j_1 - m_1} sqrt{frac{2 J +1}{2 j_2 +1 langle j_1 , {-m_1} J M| j_2 m_2 angle \& = (-1)^{j_2 + m_2} sqrt{frac{2 J +1}{2 j_1 +1 langle j_2 , {-m_2} J M | j_1 m_1 angleend{align}

Relation to 3-jm symbols

Clebsch-Gordan coefficients are related to 3-jm symbols which havemore convenient symmetry relations.: langle j_1 m_1 j_2 m_2 | j_3 m_3 angle = (-1)^{j_1-j_2+m_3}sqrt{2j_3+1}egin{pmatrix} j_1 & j_2 & j_3\ m_1 & m_2 & -m_3end{pmatrix}.

Relation to Wigner D-matrices

: int_0^{2pi} dalpha int_0^pi sineta deta int_0^{2pi} dgamma D^J_{MK}(alpha,eta,gamma)^ast D^{j_1}_{m_1k_1}(alpha,eta,gamma) D^{j_2}_{m_2k_2}(alpha,eta,gamma) = frac{8pi^2}{2J+1} langle j_1 m_1 j_2 m_2 | J M angle langle j_1 k_1 j_2 k_2 | J K angle.

ee also


* 3-jm symbol
* Racah W-coefficient
* 6-j symbol
* 9-j symbol
* Spherical harmonics
* Associated Legendre polynomials
* Angular momentum
* Angular momentum coupling
* Total angular momentum quantum number
* Azimuthal quantum number
* Table of Clebsch-Gordan coefficients
* Wigner D-matrix

References

* cite book |last= Edmonds |first= A. R. |title= Angular Momentum in Quantum Mechanics |year= 1957
publisher= Princeton University Press |location= Princeton, New Jersey |isbn= 0-691-07912-9

* cite book |last= Condon |first= Edward U. |coauthors= Shortley, G. H. |title= The Theory of Atomic Spectra |year= 1970
publisher= Cambridge University Press |location= Cambridge |isbn= 0-521-09209-4 |chapter= Chapter 3

* cite book |last= Messiah |first= Albert |title= Quantum Mechanics (Volume II) |year= 1981 | edition= 12th edition
publisher= North Holland Publishing |location= New York |isbn= 0-7204-0045-7

* cite book |last= Brink |first= D. M. |coauthors= Satchler, G. R. |title= Angular Momentum
year= 1993 |edition= 3rd edition |publisher= Clarendon Press |location= Oxford |isbn= 0-19-851759-9 |chapter= Chapter 2

* cite book |last= Zare |first= Richard N. |title= Angular Momentum |year=1988
publisher= John Wiley & Sons |location= New York |isbn= 0-471-85892-7 |chapter= Chapter 2

* cite book |last= Biedenharn |first= L. C. |coauthors= Louck, J. D. |title= Angular Momentum in Quantum Physics
year= 1981 |publisher= Addison-Wesley |location= Reading, Massachusetts |isbn= 0201135078

External links

* [http://www.volya.net/vc/vc.php Clebsch-Gordan, 3-j and 6-j Coefficient Web Calculator]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Clebsch–Gordan coefficients — In physics, the Clebsch–Gordan coefficients are sets of numbers that arise in angular momentum coupling under the laws of quantum mechanics. In more mathematical terms, the CG coefficients are used in representation theory, particularly of… …   Wikipedia

  • Table of Clebsch-Gordan coefficients — This is a table of Clebsch Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant j 1, j 2, j is arbitrary to some degree and has been fixed according to the …   Wikipedia

  • Coefficients De Clebsch-Gordan — En physique, les coefficients de Clebsch Gordan sont des nombres qui apparaissent lors de l étude des couplages de moment angulaire soumis aux lois de la mécanique quantique. Ils portent le nom des mathématiciens allemands Alfred Clebsch (1833… …   Wikipédia en Français

  • Coefficients de clebsch-gordan — En physique, les coefficients de Clebsch Gordan sont des nombres qui apparaissent lors de l étude des couplages de moment angulaire soumis aux lois de la mécanique quantique. Ils portent le nom des mathématiciens allemands Alfred Clebsch (1833… …   Wikipédia en Français

  • Coefficients de Clebsch-Gordan — En physique, les coefficients de Clebsch Gordan sont des nombres qui apparaissent lors de l étude des couplages de moment angulaire soumis aux lois de la mécanique quantique. Ils portent le nom des mathématiciens allemands Alfred Clebsch (1833… …   Wikipédia en Français

  • Clebsch-Gordan-Koeffizient — Die Clebsch Gordan Koeffizienten finden ihre Verwendung in der Kopplung quantenmechanischer Drehimpulse. Es handelt sich dabei um Entwicklungskoeffizienten, mit denen man aus der Basis der Einzeldrehimpulse in die Basis des Gesamtdrehimpulses… …   Deutsch Wikipedia

  • Anexo:Tabla de coeficientes de Clebsch-Gordan — Para ver su formulación y definición formal vea coeficientes Clebsch Gordan. Esta es una tabla de coeficientes de Clebsch Gordan usada para sumar momentos angulares en mecánica cuántica. El signo global de los coeficientes para cada conjunto de… …   Wikipedia Español

  • Alfred Clebsch — Rudolf Friedrich Alfred Clebsch Born 19 January 1833( …   Wikipedia

  • Paul Albert Gordan — (27 April 1837 ndash; 21 December 1912) was a German mathematician, a student of Carl Jacobi at the University of Königsberg before obtaining his Ph.D. at the University of Breslau (1862),MacTutor Biography|id=Gordan.] and a professor at the… …   Wikipedia

  • Alfred Clebsch — Alfred Clebsch, théoricien de l élasticité mathématique et spécialiste de géométrie différentielle (1833 1872) Rudolf Friedrich Alfred Clebsch (né le 19 janvier 1833 à Königsberg; † le 7 novembre 1872 à Göttingen) est un mathématicien prussien,… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”