Archimedean — means of or pertaining to or named in honor of the Greek mathematician Archimedes. These are most commonly:* Archimedean property * Archimedean absolute value * Archimedean solid * Archimedean point * Archimedean tiling * Archimedean spiral *… … Wikipedia
Archimedean property — In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some ordered or normed groups, fields, and other algebraic structures. Roughly speaking, it is… … Wikipedia
Archimedean — /ahr keuh mee dee euhn, mi dee euhn/, adj. 1. of, pertaining to, or discovered by Archimedes. 2. Math. of or pertaining to any ordered field, as the field of real numbers, having the property that for any two unequal positive elements there is an … Universalium
Real closed field — In mathematics, a real closed field is a field F in which any of the following equivalent conditions are true:#There is a total order on F making it an ordered field such that, in this ordering, every positive element of F is a square in F and… … Wikipedia
Ordered field — In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by… … Wikipedia
Local field — In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non discrete topology.[1] Given such a field, an absolute value can be defined on it. There are two basic types of local field … Wikipedia
Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… … Wikipedia
Non-Archimedean ordered field — In mathematics, a non Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Examples are the Levi Civita field, the hyperreal numbers, the surreal numbers, the Dehn field, and the field of rational… … Wikipedia
Conductor (class field theory) — In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map. Contents 1 Local… … Wikipedia
Non-Archimedean — In mathematics and physics, non Archimedean refers to something without the Archimedean property. This includes: Ultrametric space notably, p adic numbers Non Archimedean ordered field, namely: Levi Civita field Hyperreal numbers Surreal numbers… … Wikipedia