Hamiltonian completion

Hamiltonian completion

The Hamiltonian completion problem is to find the minimal number of edges to add to a graph to make it Hamiltonian.

The problem is clearly NP-hard in general case (since its solution gives an answer to the NP-complete problem of determining whether a given graph has a Hamiltonian cycle).

Moreover, it belongs to the APX complexity class, i.e., it is unlikely that efficient constant ratio approximation algorithms exist for this problem. [ Q. S. Wu, C. L. Lu, R. C. T. Lee, [http://www.springerlink.com/content/103cnuhn3aknv262/ An Approximate Algorithm for the Weighted Hamiltonian Path Completion Problem on a Tree] , "Lecture Notes in Computer Science", Vol. 1969 (2000) Pages: 156 - 167]

The problem may be solved in polynomial time for certain classes of graphs, including series-parallel graphs [K. Takamizawa, T. Nishizeki, and N. Saito, Linear-Time Computability of Combinatorial Problems on Series-Parallel Graphs, "J. ACM" 29 (1982) 623–641] and their generalizations [N. M. Korneyenko, Combinatorial algorithms on a class of graphs, "Discrete Applied Mathematics, v.54 n.2-3, p.215-217, 1994] , which include outerplanar graphs, as well as for a line graph of a tree [Arundhati Raychaudhuri, [http://portal.acm.org/citation.cfm?id=222481&dl=GUIDE&coll=GUIDE&CFID=16443822&CFTOKEN=97960415 The total interval number of a tree and the Hamiltonian completion number of its line graph] , Information Processing Letters, Volume 56 , Issue 6 (December 1995) 299 - 306 ] [A. Agnetis, P. Detti, C. Meloni, D. Pacciarelli, [http://portal.acm.org/citation.cfm?id=381021 A linear algorithm for the Hamiltonian completion number of the line graph of a tree] , Information Processing Letters, Volume 79 , Issue 1 (May 2001), 17 - 24 ] or a cactus graph. [ Paolo Detti, Carlo Meloni, [http://portal.acm.org/citation.cfm?id=975923&dl=GUIDE&coll=GUIDE&CFID=13226110&CFTOKEN=18722093 A linear algorithm for the Hamiltonian completion number of the line graph of a cactus] ,Discrete Applied Mathematics,Volume 136 , Issue 2-3 (February 2004) 197 - 215]

Gamarnik et al use a linear time algorithm for solving the problem on trees to study the asymptotic number of edges that must be added for sparse random graphs to make them Hamiltonian. [David Gamarnik, Maxim Sviridenko, [http://www.mit.edu/~gamarnik/Papers/HamCompletionPublished.pdf Hamiltonian completions of sparse random graphs] , Discrete Applied Mathematics 152 (2005) 139 – 158]

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • List of NP-complete problems — Here are some of the more commonly known problems that are NP complete when expressed as decision problems. This list is in no way comprehensive (there are more than 3000 known NP complete problems). Most of the problems in this list are taken… …   Wikipedia

  • Liste De Problèmes NP-Complets — Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problèmes de la décision. Puisqu on connaît plus de 3000 problèmes NP complets, cette liste n est pas exhaustive …   Wikipédia en Français

  • Liste de problemes NP-complets — Liste de problèmes NP complets Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problèmes de la décision. Puisqu on connaît plus de 3000 problèmes NP complets,… …   Wikipédia en Français

  • Liste de problèmes NP-complets — Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problème de décision. Puisqu on connaît plus de 3000 problèmes NP complets, cette liste n est pas exhaustive. La …   Wikipédia en Français

  • Liste de problèmes np-complets — Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problèmes de la décision. Puisqu on connaît plus de 3000 problèmes NP complets, cette liste n est pas exhaustive …   Wikipédia en Français

  • Series-parallel graph — In graph theory, series parallel graphs are graphs with two distinguished vertices called terminals , formed recursively by two simple composition operations. They can be used to model series and parallel electric circuits.Definition and… …   Wikipedia

  • Paul Dirac — Paul Adrien Maurice Dirac Born Paul Adrien Maurice Dirac 8 August 1902(1902 08 08) Bristol, England …   Wikipedia

  • Historical timeline of events in Hamilton, Ontario — Below is a timeline of events in Hamilton, Ontario Canada.Beginning 1799* According to all records from local historians, this district was inhabited by the Neutral Indians who called it ATTIWANDARONIA. cite book|title=Saga of a City|first=Milton …   Wikipedia

  • Edge coloring — A 3 edge coloring of the Desargues graph. In graph theory, an edge coloring of a graph is an assignment of “colors” to the edges of the graph so that no two adjacent edges have the same color. For example, the figure to the right shows an edge… …   Wikipedia

  • Supergravity — In theoretical physics, supergravity (supergravity theory) is a field theory that combines the principles of supersymmetry and general relativity. Together, these imply that, in supergravity, the supersymmetry is a local symmetry (in contrast to… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”