- Tetrachord
Traditionally, a tetrachord is a series of four tones filling in the interval of a perfect fourth, a 4:3 frequency proportion. In modern usage a tetrachord is any four-note segment of a scale or tone row. The term "tetrachord" derives from ancient Greek music theory. It literally means "four strings", originally in reference to harp-like instruments such as the
lyre or the kithara, with the implicit understanding that the four strings must be contiguous. Ancient Greek music theory distinguishes three genera of tetrachords. These genera are characterised by the largest of the three intervals of the tetrachord:;Diatonic :A diatonic tetrachord has a characteristic interval that is less than or equal to half the total interval of the tetrachord (or 249 cents). This characteristic interval is usually slightly smaller (approximating to 200 cents), becoming a whole tone. Classically, the diatonic tetrachord consists of two intervals of a tone and one of asemitone .;Chromatic :A chromatic tetrachord has a characteristic interval that is greater than half the total interval of the tetrachord, yet not as great as four-fifths of the interval (between 249 and 398 cents). Classically, the characteristic interval is aminor third (approximately 300 cents), and the two smaller intervals are equal semitones.;Enharmonic :An enharmonic tetrachord has a characteristic interval that is greater than four-fifths the total tetrachord interval (greater than 398 cents). Classically, the characteristic interval is amajor third (otherwise known as a ditone), and the two smaller intervals arequartertone s.As the three genera simply represent ranges of possible intervals within the tetrachord, various "shades" (chroai) of tetrachord with specific tunings were specified. Once the genus and shade of tetrachord are specified the three internal intervals could be arranged in six possible permutations.About
Modern music theory makes use of the
octave as the basic unit for determining tuning: ancient Greeks used the tetrachord for this purpose. The octave was recognised by ancient Greece as a fundamental interval, but it was seen as being built from two tetrachords and a whole tone. Ancient Greek music always seems to have used two identical tetrachords to build the octave. The single tone could be placed between the two tetrachords (betweenperfect fourth andperfect fifth ) (termed "disjunctive"), or it could be placed at either end of the scale (termed "conjunctive").Scales built on chromatic and enharmonic tetrachords continued to be used in the classical music of the
Middle East andIndia , but inEurope they were maintained only in certain types offolk music . The diatonic tetrachord, however, and particularly the shade built around two tones and a semitone, became the dominant tuning in European music.Permutations
The three permutations of this shade of diatonic tetrachord are:;
Lydian mode :A rising scale of two whole tones followed by a semitone, or C D E F.;Phrygian mode :A rising scale of tone, semitone and tone, C D E♭ F, or D E F G.;Dorian mode :A rising scale of a semitone followed by two tones, C D♭ E♭ F, or E F G A.Medieval music scholars misinterpreted Greek texts, and, therefore, medieval and some modern music theory uses these names for different modes than those for which they were originally intended.Pythagorean tunings
Here are the traditional
Pythagorean tuning s of the diatonic and chromatic tetrachords:Diatonic hypate parhypate lichanos mese 4/3 81/64 9/8 1/1
256/243 | 9/8 | 9/8
-498 -408 -204 0 centsChromatic hypate parhypate lichanos mese 4/3 81/64 32/27 1/1
256/243 | 2187/2048 | 32/27
-498 -408 -294 0 centsSince there is no reasonable Pythagorean tuning of the enharmonic genus, here is a representative tuning due to
Archytas :Enharmonic hypate parhypate lichanos mese 4/3 9/7 5/4 1/1
28/27 |36/35| 5/4
-498 -435 -386 0 centsOriginally, the
lyre had only four strings, so only a single tetrachord was needed. Larger scales are constructed from conjunct or disjunct tetrachords. Conjunct tetrachords share a note, while disjunct tetrachords are separated by a "disjunctive tone" of 9/8 (a Pythagorean major second). Alternating conjunct and disjunct tetrachords form a scale that repeats in octaves (as in the familiardiatonic scale , created in such a manner from the diatonic genus), but this was not the only arrangement.The Greeks analyzed genera using various terms, including diatonic, enharmonic, and chromatic, the latter being the color between the two other types of modes which were seen as being black and white. Scales are constructed from conjunct or disjunct tetrachords: the tetrachords of the chromatic genus contained a
minor third on top and twosemitone s at the bottom, the diatonic contained aminor second at top with two major seconds at the bottom, and the enharmonic contained amajor third on top with twoquarter tone s at the bottom, all filling in theperfect fourth (Miller and Lieberman, 1998) of the fixed outer strings. However, the closest term used by the Greeks to our modern usage of chromatic ispyknon or thedensity ("condensation ") of chromatic or enharmonic genera.:(ibid)
Variations
Arabic and Indian
Arabic and Indian music divide the tetrachord differently than the Greek. For example,
al-Farabi presented ten possible intervals used to divide the tetrachord (Touma 1996, p.19):Since there are two tetrachords and a major tone in an octave, this creates a 25 tone scale as used in the
Arab tone system before thequarter tone scale .Uses
Milton Babbitt's serial theory extends the term "tetrachord" to mean a four-note segment of a twelve-tone row.
Allen Forte in his "The Structure of Atonal Music" redefines the term "tetrachord" to mean what other theorists call a "tetrad", a set of four pitches or "pitch classes", rather than a series of four contiguous pitches within a scale or tone row.
ee also
*Tetrad
*All-interval tetrachord
*Diatonic and chromatic
*Jins ource
*Chalmers, John H. Jr. "Divisions of the Tetrachord".
Frog Peak Music , 1993. ISBN 0-945996-04-7
*Habib Hassan Touma (1996). "The Music of the Arabs", trans. Laurie Schwartz. Portland, Oregon: Amadeus Press. ISBN 0-931340-88-8.
*Miller, Leta E. and Lieberman, Frederic (1998). "Lou Harrison: Composing a World". Oxford University Press. ISBN 0-19-511022-6.
Wikimedia Foundation. 2010.