Racah W-coefficient

Racah W-coefficient

Racah's W-coefficients were introduced by Giulio Racah in 1942. [G. Racah, "Theory of Complex Spectra II", Physical Review, vol. 62, pp. 438-462 (1942).] These coefficients have a purely mathematical definition. In physics theyare used in calculations involving the quantum mechanicaldescription of angular momentum, for example in atomic theory.

The coefficients appear when there are three sources of angular momentumin the problem. For example, consider an atom with one electron in an
s orbital and one electron in a p orbital.Each electron has electron spin angular momentum and in additionthe p orbital has orbital angular momentum(an s orbital has zero orbital angular momentum).The atom may be described by "LS" coupling or by "jj" couplingas explained in the article on angular momentum coupling.The transformation between the wave functions that correspondto these two coulings involves a Racah W-coefficient.

Apart from a phase factor, Racah's W-coefficients are equal toWigner's 6-j symbols, so any equationinvolving Racah's W-coefficients may be rewritten using6-j symbols. This is often advantageous because thesymmetry properties of 6-j symbols are easier toremember.

Racah coefficients are related to recoupling coefficients by: W(j_1j_2Jj_3;J_{12}J_{23}) equiv [(2J_{12}+1)(2J_{23}+1)] ^{-frac{1}{2 langle (j_1, (j_2j_3)J_{23}) J | ((j_1j_2)J_{12},j_3)J angle.Recoupling coefficients are elements of a unitary transformationand their definition is given in the next section.Racah coefficients have more convenient symmetry properties thanthe recoupling coefficients (but less convenient than the 6-j symbols).

Recoupling coefficients

Coupling of two angular momenta mathbf{j}_1 and mathbf{j}_2is the construction of simultaneous eigenfunctions of mathbf{J}^2and J_z, where mathbf{J}=mathbf{j}_1+mathbf{j}_2,as explained in the article on Clebsch-Gordan coefficients. The result is:
(j_1j_2)JM angle = sum_{m_1=-j_1}^{j_1} sum_{m_2=-j_2}^{j_2}
j_1m_1 angle |j_2m_2 angle langle j_1m_1j_2m_2|JM angle,where J=|j_1-j_2|,ldots,j_1+j_2 and M=-J,ldots,J.

Coupling of three angular momenta mathbf{j}_1, mathbf{j}_2, and mathbf{j}_3,may be done by first coupling mathbf{j}_1 and mathbf{j}_2 to mathbf{J}_{12}and next coupling mathbf{J}_{12} and mathbf{j}_3 to total angular momentummathbf{J}::
((j_1j_2)J_{12}j_3)JM angle = sum_{M_{12}=-J_{12^{J_{12 sum_{m_3=-j_3}^{j_3}
(j_1j_2)J_{12}M_{12} angle |j_3m_3 angle langle J_{12}M_{12}j_3m_3|JM angle

Alternatively, one may first couple mathbf{j}_2 and mathbf{j}_3to mathbf{J}_{23} and next couple mathbf{j}_1 and mathbf{J}_{23}to mathbf{J}::
(j_1,(j_2j_3)J_{23})JM angle = sum_{m_1=-j_1}^{j_1} sum_{M_{23}=-J_{23^{J_{23
j_1m_1 angle |(j_2j_3)J_{23}M_{23} angle langle j_1m_1J_{23}M_{23}|JM angle

Both coupling schemes result in complete orthonormal bases for the(2j_1+1)(2j_2+1)(2j_3+1) dimensional space spanned by:
j_1 m_1 angle |j_2 m_2 angle |j_3 m_3 angle, ;; m_1=-j_1,ldots,j_1;;; m_2=-j_2,ldots,j_2;;; m_3=-j_3,ldots,j_3.Hence, the two total angular momentum bases are related by a unitary transformation. The matrix elementsof this unitary transformation are given by a scalar product and are known as recouplingcoefficients. The coefficients are independent of M and so we have:
((j_1j_2)J_{12}j_3)JM angle = sum_{J_{23 |(j_1,(j_2j_3)J_{23})JM angle langle (j_1,(j_2j_3)J_{23})J |((j_1j_2)J_{12}j_3)J angle.The independence of M follows readily by writing this equation for M=Jand applying the lowering operatorJ_- to both sides of the equation.

Relation to Wigner's 6-j symbol

Racah's W-coefficients are related to Wigner's 6-j symbols, which have even moreconvenient symmetry properties: W(j_1j_2Jj_3;J_{12}J_{23}) = (-1)^{j_1+j_2+j_3+J}egin{Bmatrix} j_1 & j_2 & J_{12}\ j_3 & J & J_{23}end{Bmatrix}.

ee also

* Clebsch-Gordan coefficient
* 3-jm symbol
* 6-j symbol

Cited reference

Further references

* cite book |last= Edmonds |first= A. R. |title= Angular Momentum in Quantum Mechanics |year= 1957
publisher= Princeton University Press |location= Princeton, New Jersey |isbn= 0-691-07912-9

* cite book |last= Condon |first= Edward U. |coauthors= Shortley, G. H. |title= The Theory of Atomic Spectra |year= 1970
publisher= Cambridge University Press |location= Cambridge |isbn= 0-521-09209-4 |chapter= Chapter 3

* cite book |last= Messiah |first= Albert |title= Quantum Mechanics (Volume II) |year= 1981 | edition= 12th edition
publisher= North Holland Publishing |location= New York |isbn= 0-7204-0045-7

* cite book |last= Brink |first= D. M. |coauthors= Satchler, G. R. |title= Angular Momentum
year= 1993 |edition= 3rd edition |publisher= Clarendon Press |location= Oxford |isbn= 0-19-851759-9 |chapter= Chapter 2

* cite book |last= Zare |first= Richard N. |title= Angular Momentum |year=1988
publisher= John Wiley |location= New York |isbn= 0-471-85892-7 |chapter= Chapter 2

* cite book |last= Biedenharn |first= L. C. |coauthors= Louck, J. D. |title= Angular Momentum in Quantum Physics
year= 1981 |publisher= Addison-Wesley |location= Reading, Massachusetts |isbn= 0201135078


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • RACAH, GIULIO — (Yoel; 1909–1965), Israeli physicist, born in Florence, Italy. On his mother s side, Racah s family claimed to trace its ancestry in Italy back to the destruction of the Second Temple. Racah studied in Rome under Enrico Fermi and in Pisa under… …   Encyclopedia of Judaism

  • Racah coefficient — Rakaho koeficientas statusas T sritis fizika atitikmenys: angl. Racah coefficient vok. Racah Koeffizient, m rus. коэффициент Ракаха, m pranc. coefficient de Racah, m …   Fizikos terminų žodynas

  • coefficient de Racah — Rakaho koeficientas statusas T sritis fizika atitikmenys: angl. Racah coefficient vok. Racah Koeffizient, m rus. коэффициент Ракаха, m pranc. coefficient de Racah, m …   Fizikos terminų žodynas

  • Racah-Koeffizient — Rakaho koeficientas statusas T sritis fizika atitikmenys: angl. Racah coefficient vok. Racah Koeffizient, m rus. коэффициент Ракаха, m pranc. coefficient de Racah, m …   Fizikos terminų žodynas

  • Racah polynomials — In mathematics, Racah polynomials are orthogonal polynomials named after Giulio Racah, as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients.The Racah polynomials were first defined by… …   Wikipedia

  • Giulio Racah — Giulio (Yoel) Racah (פרופסור יואל רקח en hébreu) (1909 28 août 1965) est un physicien et mathématicien italiano israélien. Biographie Cette section est vide, insuffisamment détaillée ou incomplète …   Wikipédia en Français

  • Giulio Racah — Giulio (Yoel) Racah ( he. פרופסור (יואל) רקח; 1909 August 28, 1965) was an Italian Israeli physicist and mathematician.Born in Florence, Italy, he took his PhD from the University there in 1930, and later studied in Rome with Enrico Fermi. In… …   Wikipedia

  • 9-j symbol — Wigner s 9 j symbols were introduced by Eugene Paul Wigner in 1937. They are related to recoupling coefficientsinvolving four angular momenta: [(2j 3+1)(2j 6+1)(2j 7+1)(2j 8+1)] ^frac{1}{2} egin{Bmatrix} j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9… …   Wikipedia

  • 6-j symbol — Wigner s 6 j symbols were introduced by Eugene Paul Wigner in 1940, and published in 1965.They are related to Racah s W coefficientsby: egin{Bmatrix} j 1 j 2 j 3 j 4 j 5 j 6 end{Bmatrix} = ( 1)^{j 1+j 2+j 4+j 5}W(j 1j 2j 5j 4;j 3j 6).They have… …   Wikipedia

  • Clebsch–Gordan coefficients — In physics, the Clebsch–Gordan coefficients are sets of numbers that arise in angular momentum coupling under the laws of quantum mechanics. In more mathematical terms, the CG coefficients are used in representation theory, particularly of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”