Carmichael's theorem

Carmichael's theorem

:"This article refers to Carmichael's theorem about Fibonacci numbers. Carmichael's theorem may also refer to the recursive definition of the Carmichael function."

Carmichael's theorem, named after the American mathematician R.D. Carmichael, states that for "n" greater than 12, the "n"th Fibonacci number F("n") has at least one prime factor that is not a factor of any earlier Fibonacci number. The only exceptions for "n" up to 12 are:

:F(1)=1 and F(2)=1, which have no prime factors:F(6)=8 whose only prime factor is 2 (which is F(3)):F(12)=144 whose only prime factors are 2 (which is F(3)) and 3 (which is F(4))

If a prime "p" is a factor of F("n") and not a factor of any F("m") with "m" < "n" then "p" is called a "characteristic factor" or a "primitive divisor" of F("n"). Carmichael's theorem says that every Fibonacci number, apart from the exceptions listed above, has at least one characteristic factor.

References

*citation
last = Carmichael | first = R. D. | author-link = Robert Daniel Carmichael
doi = 10.2307/1967797
issue = 1/4
journal = Annals of Mathematics
pages = 30–70
title = On the numerical factors of the arithmetic forms α"n""n"
volume = 15
year = 1913
.

*citation
last = Knott | first = R.
publisher = [http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html Fibonacci Numbers and the Golden Section]
title = Fibonacci numbers and special prime factors
url = http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibmaths.html#primefactor
.

*citation
last = Yabuta | first = M.
journal = Fibonacci Quarterly
pages = 493–443
title = A simple proof of Carmichael's theorem on primitive divisors
volume = 39
year = 2001
.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Carmichael function — In number theory, the Carmichael function of a positive integer n, denoted lambda(n),is defined as the smallest positive integer m such that:a^m equiv 1 pmod{n}for every integer a that is coprime to n.In other words, in more algebraic terms, it… …   Wikipedia

  • Carmichael number — In number theory, a Carmichael number is a composite positive integer n which satisfies the congruence b^{n 1} equiv 1 pmod{n} for all integers b which are relatively prime to n (see modular arithmetic). They are named for Robert Carmichael. The… …   Wikipedia

  • Carmichael's totient function conjecture — In mathematics, Carmichael s totient function conjecture concerns the multiplicity of values of Euler s totient function phi;( n ), which counts the number of integers less than and coprime to n .This function phi;( n ) is equal to 2 when n is… …   Wikipedia

  • Fermat's little theorem — (not to be confused with Fermat s last theorem) states that if p is a prime number, then for any integer a , a^p a will be evenly divisible by p . This can be expressed in the notation of modular arithmetic as follows::a^p equiv a pmod{p},!A… …   Wikipedia

  • Robert Daniel Carmichael — (1879–1967) was a leading American mathematician. Carmichael was born in Goodwater, Alabama. He attended Lineville College, receiving his B.A. in 1898, while working towards his Ph. D at Princeton University, which he earned in 1911. His thesis… …   Wikipedia

  • Teorema de Carmichael — Este artículo habla del teorema de Carmichael de los números de Fibonacci. También existe otro teorema de Carmichael aplicado a la definición recursiva de la función de Carmichael. El teorema de Carmichael, nombrado así en honor al matemático… …   Wikipedia Español

  • Función de Carmichael — En Teoría de números, la función de Carmichael de un entero positivo n, denotada λ(n), se define como el menor entero m tal que cumple: para cada número entero a coprimo con n. En otras palabras, define el exponente del grupo multiplicativo de… …   Wikipedia Español

  • Euler's theorem — In number theory, Euler s theorem (also known as the Fermat Euler theorem or Euler s totient theorem) states that if n is a positive integer and a is coprime to n , then:a^{varphi (n)} equiv 1 pmod{n}where φ( n ) is Euler s totient function and …   Wikipedia

  • Korselts Theorem — Eine Carmichael Zahl, benannt nach dem Mathematiker Robert Daniel Carmichael, ist eine spezielle eulersche Pseudoprimzahl, für die gilt: Eine Carmichael Zahl n ist pseudoprim zu allen Basen, die keine gemeinsamen Primfaktoren mit n haben. Jede… …   Deutsch Wikipedia

  • Nombre De Carmichaël — Nombre de Carmichael En théorie des nombres, un nombre de Carmichael est un entier composé positif n qui vérifie la propriété suivante : pour tout entier a, n est un diviseur de an − a Sommaire 1 Tour d horizon …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”