Smith-Volterra-Cantor set

Smith-Volterra-Cantor set

In mathematics, the Smith-Volterra-Cantor set (SVC) or the fat Cantor set is an example of a set of points on the real line R that is nowhere dense (in particular it contains no intervals), yet has positive measure.

Construction

Similar to the construction of the Cantor set, the Smith-Volterra-Cantor set is constructed by removing certain intervals from the unit interval [0, 1] .

The process begins by removing the middle 1/4 from the interval [0, 1] (the same as removing 1/8 on either side of the middle point at 1/2) so the remaining set is

:left [0, frac{3}{8} ight] cup left [frac{5}{8}, 1 ight] .

The following steps consist of removing subintervals of width 1/2^{2n} from the middle of each of the 2^{n-1} remaining intervals. So for the second step the intervals (5/32, 7/32) and (25/32, 27/32) are removed, leaving

:left [0, frac{5}{32} ight] cup left [frac{7}{32}, frac{3}{8} ight] cup left [frac{5}{8}, frac{25}{32} ight] cup left [frac{27}{32}, 1 ight] .

Continuing indefinitely with this removal, the Smith-Volterra-Cantor set is then the set of points that are never removed. The image below shows the initial set and five iterations of this process:

Properties

By construction, the Smith-Volterra-Cantor set contains no intervals. During the process, intervals of total length

: sum_{n=0}^{infty} 2^n(1/2^{2n + 2}) = frac{1}{4} + frac{1}{8} + frac{1}{32} + cdots = frac{1}{2} ,

are removed from [0, 1] , showing that the set of the remaining points has a positive measure of 1/2.

Other fat Cantor sets

In general, you can remove "r""n" from each remaining subinterval at the "n"-th step of the algorithm, and end up with a Cantor-like set. The resulting set will have positive measure if and only if the sum of the sequence is less than the measure of the initial interval.

See also

* The SVC is used in the construction of Volterra's function (see external link).

External links

* [http://www.macalester.edu/~bressoud/talks/Volterra-4.pdf "Wrestling with the Fundamental Theorem of Calculus: Volterra's function] , talk by David Marius Bressoud


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Ensemble de Smith-Volterra-Cantor — Après avoir retiré les intervalles noirs, les points ici en blanc forment un ensemble nulle part dense et de mesure de Lebesgue 1/2. En mathématiques, l ensemble de Smith–Volterra–Cantor est un exemple de points de la droite réelle qui n est… …   Wikipédia en Français

  • Conjunto de Smith-Volterra-Cantor — Después de eliminarse los intervalos negros, los puntos blancos que quedan forman un conjunto que no es denso en ninguna parte, de medida 1/2. En matemáticas, el conjunto de Smith Volterra Cantor (SVC) o el conjunto gordo de Cantor (en inglés fat …   Wikipedia Español

  • Cantor set — In mathematics, the Cantor set, introduced by German mathematician Georg Cantor in 1883 [Georg Cantor (1883) Über unendliche, lineare Punktmannigfaltigkeiten V [On infinite, linear point manifolds (sets)] , Mathematische Annalen , vol. 21, pages… …   Wikipedia

  • Volterra (disambiguation) — Volterra may refer to the following:* Volterra a town in Italy * Daniele da Volterra an Italian painter * Francesco da Volterra an Italian painter * Vito Volterra an Italian mathematician * Volterra Semiconductor an American semiconductor… …   Wikipedia

  • Volterra's function — In mathematics, Volterra s function, named for Vito Volterra, is a real valued function V ( x ) defined on the real line R with the following curious combination of properties:* V ( x ) is differentiable everywhere * The derivative V prime;( x )… …   Wikipedia

  • Vito Volterra — Infobox Scientist name = Vito Volterra box width = image size = 140px caption = Vito Volterra birth date = May 3, 1860 birth place = Ancona death date = October 11, 1940 death place = residence = citizenship = nationality = Italian ethnicity =… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Lebesgue measure — In mathematics, the Lebesgue measure, named after Henri Lebesgue, is the standard way of assigning a length, area or volume to subsets of Euclidean space. It is used throughout real analysis, in particular to define Lebesgue integration. Sets… …   Wikipedia

  • SVC — could mean: * an abbreviation for the word service. * an abbreviation for the Scalable Video Coding, an extension of the video compression standard AVC [http://www.chiariglione.org/mpeg/technologies/mp04 svc/] * an abbreviation for the superior… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”