Begriffsschrift

Begriffsschrift

"Begriffsschrift" is the title of a short book on logic by Gottlob Frege, published in 1879, and is also the name of the formal system set out in that book.

"Begriffsschrift" is usually translated as "concept writing" or "concept notation"; the full title of the book identifies it as "a formula language, modelled on that of arithmetic, of pure thought." The "Begriffsschrift" was arguably the most important publication in logic since Aristotle founded the subject. Frege's motivation for developing his formal approach to logic resembled Leibniz's motivation for his calculus ratiocinator. Frege went on to employ his logical calculus in his research on the foundations of mathematics, carried out over the next quarter century.

Notation and the system

The calculus contains the first appearance of quantified variables, and is essentially classical bivalent second-order logic with identity, albeit presented using a highly idiosyncratic two-dimensional .

In the first chapter, Frege defines basic ideas and notation, like proposition ("judgement"), the universal quantifier ("the generality"), the conditional, negation and the "sign for identity of content" equiv ; in the second chapter he declares nine formalized propositions as axioms.

In chapter 1, §5, Frege defines the conditional as follows:

:"Let A and B refer to judgeable contents, then the four possibilities are:Let{| border=0 cellpadding=0 cellspacing=0 align=center
-
:signify that the third of those possibilities does not obtain, but one of the three others does. So if we negate , that means the third possibility is valid, i.e. we negate A and assert B."

The calculus in Frege's work

Frege declared nine of his propositions to be axioms, and justified them by arguing informally that, given their intended meanings, they express intuitive truths. Re-expressed in contemporary notation, these axioms are:

# vdash A ightarrow left( B ightarrow A ight)
# vdash left [ A ightarrow left( B ightarrow C ight) ight] ightarrow left [ left( A ightarrow B ight) ightarrow left( A ightarrow C ight) ight]
# vdash left [ D ightarrow left( B ightarrow A ight) ight] ightarrow left [ B ightarrow left( D ightarrow A ight) ight]
# vdash left( B ightarrow A ight) ightarrow left( lnot A ightarrow lnot B ight)
# vdash lnot lnot A ightarrow A
# vdash A ightarrow lnot lnot A
# vdash left( c=d ight) ightarrow left( f(c) = f(d) ight)
# vdash c = c
# vdash left( forall a : f(a) ight) ightarrow f(c)

These are propositions 1, 2, 8, 28, 31, 41, 52, 54, and 58 in the "Begriffschrifft". (1)-(3) govern material implication, (4)-(6) negation, (7) and (8) identity, and (9) the universal quantifier. (7) expresses Leibniz's indiscernibility of identicals, and (8) asserts that identity is reflexive.

All other propositions are deduced from (1)-(9) by invoking any of the following inference rules:
*Modus ponens allows us to infer vdash B from vdash A o B and vdash A;
*The rule of generalization allows us to infer vdash P ightarrow forall x : A(x) from vdash P o A(x) if "x" does not occur in "P";
*The rule of substitution, which Frege does not state explicitly. This rule is much harder to articulate precisely than the two preceding rules, and Frege invokes it in ways that are not obviously legitimate.

The main results of the third chapter, titled "Parts from a general series theory," concern what is now called the ancestral of a relation "R". "b" is an "R"-ancestor of "a" is written "aR"*"b".

Frege applied the results from the "Begriffsschrifft", including those on the ancestral of a relation, in his later work "The Foundations of Arithmetic". Thus, if we take "xRy" to be the relation "y"="x"+1, then 0"R"*y is the predicate "y" is a natural number." (133) says that if "x", "y", and "z" are natural numbers, then one of the following must hold: "x"<"y", "x"="y", or "y"<"x". This is the so-called "law of trichotomy".

Influence on other works

For a careful recent study of how the "Begriffsschrift" was reviewed in the German mathematical literature, see Vilko (1998). Some reviewers, especially Ernst Schroder, were on the whole favorable. All work in formal logic subsequent to the "Begriffsschrift" is indebted to it, because its second-order logic was the first formal logic capable of representing a fair bit of mathematics and natural language.

Some vestige of Frege's notation survives in the "turnstile" symbol vdash derived from his "Inhaltsstrich" ── and "Urteilsstrich" │. Frege used these symbols in the "Begriffsschrift" in the unified form ├─ for declaring that a proposition is (tautologically) true. He used the "Definitionsdoppelstrich" │├─ as a sign that a proposition is a definition. Furthermore, the negation sign eg can be read as a combination of the horizontal "Inhaltsstrich" with a vertical negation stroke. This negation symbol was introduced by Arend Heyting [Arend Heyting: "Die formalen Regeln der intuitionistischen Logik," in: "Sitzungsberichte der preußischen Akademie der Wissenschaften, phys.-math. Klasse", 1930, S. 42-65.] in 1930 to distinguish intuitionistic from classical negation.

In the "Tractatus Logico Philosophicus", Ludwig Wittgenstein pays homage to Frege by employing the term "Begriffsschrift" as a synonym for logical formalism.

Frege's 1892 essay, "Sense and reference" recants some of the conclusions of the "Begriffschrifft" about identity (denoted in mathematics by the = sign).

A quote

"If the task of philosophy is to break the domination of words over the human mind [...] , then my concept notation, being developed for these purposes, can be a useful instrument for philosophers [...] I believe the cause of logic has been advanced already by the invention of this concept notation." (Preface to the "Begriffsschrift")

ee also

*Ancestral relation
*Frege's propositional calculus

References

Further reading

*Gottlob Frege. "Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens". Halle, 1879.Translations:
* [http://www.southernct.edu/organizations/rccs/staff.html Bynum, Terrell Ward,] trans. and ed., 1972. "Conceptual notation and related articles", with a biography and introduction. Oxford Uni. Press.
*Bauer-Mengelberg, Stefan, 1967, "Concept Script" in Jean Van Heijenoort, ed., "From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931". Harvard Uni. Press.

Secondary literature:
* George Boolos, 1985. "Reading the "Begriffsschrift", "Mind" 94: 331-44.
*Ivor Grattan-Guinness, 2000. "In Search of Mathematical Roots". Princeton University Press.
* Risto Vilkko, 1998, " [http://www.sciencedirect.com/science?_ob=PublicationURL&_cdi=6817&_pubType=J&_acct=C000007858&_version=1&_urlVersion=0&_userid=103118&md5=cdca08d0984650f66659ab072801d527&jchunk=25#25 The reception of Frege's "Begriffsschrift",] " "Historia Mathematica 25(4)": 412-22.

External links

*Stanford Encyclopedia of Philosophy: " [http://plato.stanford.edu/entries/frege-logic/ Frege's Logic, Theorem, and Foundations for Arithmetic] " -- by Edward N. Zalta.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Begriffsschrift — Begriffsschrift, so v.w. Idiographische Schrift, s.u. Schrift A) …   Pierer's Universal-Lexikon

  • Begriffsschrift — ↑Ideografie …   Das große Fremdwörterbuch

  • Begriffsschrift — Das Titelblatt der Begriffsschrift Die Begriffsschrift ist ein schmales, nur etwa achtzig Seiten umfassendes Buch des Jenaer Mathematikers und Philosophen Gottlob Frege zur Logik. Es wurde 1879 mit dem Untertitel „Eine der arithmetischen… …   Deutsch Wikipedia

  • Begriffsschrift — Idéographie L idéographie (Begriffsschrift) est un langage entièrement formalisé inventé par le logicien Gottlob Frege et qui a pour but représenter de manière parfaite la logique mathématique. Sommaire 1 Introduction 2 Naissance de l idéographie …   Wikipédia en Français

  • Begriffsschrift — Be|grịffs|schrift 〈f. 20〉 Schrift, in der jeder Begriff durch ein bes. Zeichen ausgedrückt wird, z. B. die chines. Schrift * * * Begriffsschrift,   Ideographie. * * * Be|grịffs|schrift, die: a) (Sprachw.) Ideographie: die chinesische Schrift… …   Universal-Lexikon

  • Begriffsschriftnotation — Das Titelblatt der Begriffsschrift Die Begriffsschrift ist ein schmales, weniger als hundert Seiten umfassendes Buch des Jenaer Mathematikers und Philosophen Gottlob Frege zur Logik. Es wurde 1879 mit dem Untertitel „Eine der arithmetischen… …   Deutsch Wikipedia

  • Function (mathematics) — f(x) redirects here. For the band, see f(x) (band). Graph of example function, In mathematics, a function associates one quantity, the a …   Wikipedia

  • Ludwig Gottlob Frege — Gottlob Frege Friedrich Ludwig Gottlob Frege (* 8. November 1848 in Wismar; † 26. Juli 1925 in Bad Kleinen) war ein deutscher Mathematiker, Logiker und Philosoph. Seine herausragende Leistung auf dem Gebiet der Logik besteht darin, als erster… …   Deutsch Wikipedia

  • Characteristica universalis — Universal characteristic redirects here. For the concept of the three universal characteristics in Buddhism, see Three marks of existence. The Latin term characteristica universalis, commonly interpreted as universal characteristic, or universal… …   Wikipedia

  • Grundlagen der Arithmetik — Die Grundlagen der Arithmetik (1884) mit dem Untertitel „Eine logisch mathematische Untersuchung über den Begriff der Zahl“ ist eines der Hauptwerke Gottlob Freges. Thema des Buches ist die Erläuterung des Begriffs „Zahl“ bzw. „Anzahl“. Anhand… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”