Hamiltonian — may refer toIn mathematics : * Hamiltonian system * Hamiltonian path, in graph theory * Hamiltonian group, in group theory * Hamiltonian (control theory) * Hamiltonian matrix * Hamiltonian flow * Hamiltonian vector field * Hamiltonian numbers (or … Wikipedia
Constraint algorithm — In mechanics, a constraint algorithm is a method for satisfying constraints for bodies that obey Newton s equations of motion. There are three basic approaches to satisfying such constraints: choosing novel unconstrained coordinates ( internal… … Wikipedia
First class constraint — In Hamiltonian mechanics, consider a symplectic manifold M with a smooth Hamiltonian over it (for field theories, M would be infinite dimensional). Poisson bracketsSuppose we have some constraints : f i(x)=0, for n smooth functions :{ f i } {i=… … Wikipedia
Wheeler–deWitt equation — In theoretical physics, the Wheeler DeWitt equation [DeWitt, B.S., “Quantum Theory of Gravity. I. The Canonical Theory”, Phys. Rev., 160, 1113 1148, (1967).] is a functional differential equation. It is ill defined in the general case, but very… … Wikipedia
Loop quantum gravity — Not to be confused with the path integral formulation of LQG, see spin foam. This article is about LQG in its Canonical formulation.. Beyond the Standard Model … Wikipedia
History of loop quantum gravity — General relativity is the theory of gravitation published by Albert Einstein in 1915. According to it, the force of gravity is a manifestation of the local geometry of spacetime. Mathematically, the theory is modelled after Bernhard Riemann s… … Wikipedia
List of mathematical topics in classical mechanics — This is a list of mathematical topics in classical mechanics, by Wikipedia page. See also list of variational topics, correspondence principle.Newtonian physics*Newton s laws of motion *Inertia, point mass *Kinematics, rigid body *Momentum,… … Wikipedia
Dirac bracket — The Dirac bracket is a generalization of the Poisson bracket developed by Paul Dirac to correctly treat systems with second class constraints in Hamiltonian mechanics and canonical quantization. It is an important part of Dirac s development of… … Wikipedia
Second class constraints — In a constrained Hamiltonian system, a dynamical quantity is second class if its Poisson bracket with at least one constraint is nonvanishing. A constraint that has a nonzero Poisson bracket with at least one other constraint, then, is a second… … Wikipedia
BRST quantization — In theoretical physics, BRST quantization (where the BRST refers to Becchi, Rouet, Stora and Tyutin) is a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier QFT frameworks… … Wikipedia