Lemma von Zassenhaus — In der Gruppentheorie, einem Teilgebiet der Mathematik, werden gewisse Reihen, Ketten oder auch Türme von Untergruppen, bei denen jede Untergruppe in ihrer Nachfolgerin enthalten ist (aufsteigende Reihen) oder umgekehrt (absteigende Reihen),… … Deutsch Wikipedia
Hans Julius Zassenhaus — en 1987 Hans Julius Zassenhaus (né le 28 mai 1912 à Coblence, mort le 21 novembre 1991 à Columbus, dans l’Ohio, aux États Unis) est un … Wikipédia en Français
Hans Julius Zassenhaus — (28 May 1912 ndash;21 November 1991) was a German mathematician, known for work in many parts of abstract algebra, and as a pioneer of computer algebra.He was born in Koblenz ndash;Moselweiss, and became a student and then assistant of Emil Artin … Wikipedia
Hans Zassenhaus — in der Mitte Hans Julius Zassenhaus (* 28. Mai 1912 in Koblenz; † 21. November 1991 in Columbus, Ohio), war ein deutscher Mathematiker, berühmt durch Arbeiten zur Algebra und als Pionier der … Deutsch Wikipedia
Hans Julius Zassenhaus — (* 28. Mai 1912 in Koblenz; † 21. November 1991 in Columbus, Ohio) war ein deutscher Mathematiker, berühmt durch Arbeiten zur Algebra und als Pionier … Deutsch Wikipedia
List of group theory topics — Contents 1 Structures and operations 2 Basic properties of groups 2.1 Group homomorphisms 3 Basic types of groups … Wikipedia
List of mathematics articles (Z) — NOTOC Z Z channel (information theory) Z factor Z function Z group Z matrix (mathematics) Z notation Z order (curve) Z test Z transform Z* theorem Zadoff–Chu sequence Zahorski theorem Zakai equation Zakharov–Schulman system Zakharov system ZAMM… … Wikipedia
List of lemmas — This following is a list of lemmas (or, lemmata , i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. 0 to 9 *0/1 Sorting Lemma ( comparison… … Wikipedia
Théorème du papillon — Ne doit pas être confondu avec le lemme de Zassenhaus (en) ou « lemme du papillon » … Wikipédia en Français
Butterfly diagram — used for finding the most likely sequence of hidden states.Most commonly, the term butterfly appears in the context of the Cooley Tukey FFT algorithm, which recursively breaks down a DFT of composite size n = r m into r smaller transforms of size … Wikipedia