Subnormal operator

Subnormal operator

In mathematics, especially operator theory, subnormal operators are bounded operators on a Hilbert space defined by weakening the requirements for normal operators. Some examples of subnormal operators are isometries and Toeplitz operators with analytic symbols.

Definition

Let "H" be a Hilbert space. A bounded operator "A" on "H" is said to be subnormal if "A" has a normal extension. In other words, "A" is subnormal if there exists a Hilbert space "K" such that "H" can be embedded in "K" and there exists a normal operator "N" of the form

:N = egin{bmatrix} A & B\ 0 & Cend{bmatrix}

for some bounded operators

:B : H^{perp} ightarrow H, quad mbox{and} quad C : H^{perp} ightarrow H^{perp}.

Normality, quasinormality, and subnormality

Normal operators

Every normal operator is subnormal by definition, but the converse is not true in general. An simple class of examples can be obtained by weakening the properties of unitary operators. A unitary operator is an isometry with dense range. Consider now an isometry "A" whose range is not necessarily dense. A concrete example of such is the unilateral shift, which is not normal. But "A" is subnormal and this can be shown explicitly. Define an operator "U" on

:H oplus H

by

: U = egin{bmatrix} A & I - AA^* \ 0 & - A^* end{bmatrix}.

Direct calculation shows that "U" is unitary, therefore a normal extension of "A". The operator "U" is called the "unitary dilation" of the isometry "A".

Quasinormal operators

An operator "A" is said to be quasinormal if "A" commutes with "A*A". A normal operator is thus quasinormal; the converse is not true. A counter example is given, as above, by the unilateral shift. Therefore the family of normal operators is a proper subset of both quasinormal and subnormal operators. A natural question is how are the quasinormal and subnormal operators related.

We will show that a quasinormal operator is necessarily subnormal but not vice versa. Thus the normal operators is a proper subfamily of quasinormal operators, which in turn are contained by the subnormal operators. To argue the claim that a quasinormal operator is subnormal, recall the following property of quasinormal operators:

Fact: A bounded operator "A" is quasinormal if and only if in its polar decomposition "A" = "UP", the partial isometry "U" and positive operator "P" commute.

Given a quasinormal "A", the idea is to construct dilations for "U" and "P" in a sufficiently nice way so everything commutes. Suppose for the moment that "U" is an isometry. Let "V" be the unitary dilation of "U",

: V = egin{bmatrix} U & I - UU^* \ 0 & - U^* end{bmatrix}= egin{bmatrix} U & D_{U^*} \ 0 & - U^* end{bmatrix}.

Define

: Q = egin{bmatrix} P & 0 \ 0 & P end{bmatrix}.

The operator "N" = "VQ" is clearly an extension of "A". We show it is a normal extension via direct calculation. Unitarity of "V" means

:N^*N = QV^*VQ = Q^2 = egin{bmatrix} P^2 & 0 \ 0 & P^2 end{bmatrix}.

On the other hand,

:N N^* = egin{bmatrix} UP^2U^* + D_{U^*} P^2 D_{U^*} & -D_{U^*}P^2 U \ -U^* P^2 D_{U^*} & U^* P^2 U end{bmatrix}.

Because "UP = PU" and "P" is self adjoint, we have "U*P = PU*" and "DU*P = DU*P". Comparing entries then shows "N" is normal. This proves quasinormality implies normality.

For a counter example that shows the converse is not true, consider again the unilateral shift "A". The operator "B" = "A" + "s" for some scalar "s" remains subnormal. But if "B" is quasinormal, a straightforward calculation shows that "A*A = AA*", which is a contradiction.

Minimal normal extension

Non-uniqueness of normal extensions

Given a subnormal operator "A", its normal extension "B" is not unique. For example, let "A" be the unilateral shift, on "l"2(N). One normal extension is the bilateral shift "B" on "l"2(Z) defined by

:B (cdots, a_{-1}, {hat a_0}, a_1, cdots) = (cdots, {hat a_{-1, a_0, a_1, cdots),

where ˆ denotes the zero-th position. "B" can be expressed in terms of the operator matrix

: B = egin{bmatrix} A & I - AA^* \ 0 & A^* end{bmatrix}.

Another normal extension is given by the unitary dilation "B' " of "A" defined above:

: B' = egin{bmatrix} A & I - AA^* \ 0 & - A^* end{bmatrix}

whose action is described by

:B' (cdots, a_{-2}, a_{-1}, {hat a_0}, a_1, a_2, cdots) = (cdots, - a_{-2}, {hat a_{-1, a_0, a_1, a_2, cdots).

Minimality

Thus one is interested in the normal extension that is, in some sense, smallest. More precisely, a normal operator "B" acting on a Hilbert space "K" is said to be a minimal extension of a subnormal "A" if " K' " ⊂ "K" is a reducing subspace of "B" and "H" ⊂ " K' ", then "K' " = "K". (A subspace is a reducing subspace of "B" if it is invariant under both "B" and "B*".)

One can show that if two operators "B"1 and "B"2 are minimal extensions on "K"1 and "K"2, respectively, then there exists an unitary operator

:U: K_1 ightarrow K_2.

Also, the following interwining relationship holds:

:U B_1 = B_2 U. ,

This can be shown constructively. Consider the set "S" consisting of vectors of the following form:

:sum_{i=0}^n (B_1^*)^i h_i = h_0+ B_1 ^* h_1 + (B_1^*)^2 h_2 + cdots + (B_1^*)^n h_n quad mbox{where} quad h_i in H.

Let "K' " ⊂ "K"1 be the subspace that is the closure of the linear span of "S". By definition, "K' " is invariant under "B"1* and contains "H". The normality of "B"1 and the assumption that "H" is invariant under "B"1 imply "K' " is invariant under "B"1. Therefore "K' " = "K"1. The Hilbert space "K"2 can be identified in exactly the same way. Now we define the operator "U" as follows:

:U sum_{i=0}^n (B_1^*)^i h_i = sum_{i=0}^n (B_2^*)^i h_i

Because

:langle sum_{i=0}^n (B_1^*)^i h_i, sum_{j=0}^n (B_1^*)^j h_j angle= sum_{i j} langle h_i, (B_1)^i (B_1^*)^j h_j angle= sum_{i j} langle (B_2)^j h_i, (B_2)^i h_j angle= langle sum_{i=0}^n (B_2^*)^i h_i, sum_{j=0}^n (B_2^*)^j h_j angle ,

, the operator "U" is unitary. Direct computation also shows (the assumption that both "B"1 and "B"2 are extensions of "A" are needed here)

:mbox{if} quad g = sum_{i=0}^n (B_1^*)^i h_i ,

:mbox{then} quad U B_1 g = B_2 U g = sum_{i=0}^n (B_2^*)^i A h_i.

When "B"1 and "B"2 are not assumed to be minimal, the same calculation shows that above claim holds verbatim with "U" being a partial isometry.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… …   Wikipedia

  • Quasinormal operator — In operator theory, quasinormal operators is a class of bounded operators defined by weakening the requirements of a normal operator. Definition and some properties Definition Let A be a bounded operator on a Hilbert space H , then A is said to… …   Wikipedia

  • Hyponormaler Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet …   Deutsch Wikipedia

  • Normaloider Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet …   Deutsch Wikipedia

  • Paranormaler Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet …   Deutsch Wikipedia

  • Quasinormaler Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet …   Deutsch Wikipedia

  • Subnormaler Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet …   Deutsch Wikipedia

  • Normaler Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet… …   Deutsch Wikipedia

  • Normal operator — In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H (or equivalently in a C* algebra) is a continuous linear operator that commutes with its hermitian adjoint N*: Normal operators are important because… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”