- Missing values
In
statistics , missing values are a common occurrence. Several statistical methods have been developed to deal with this problem. Missing values mean that nodata value is stored for thevariable in the currentobservation . Modernstatistical package s have made dealing with missing values much easier. Often these use amaximum likelihood estimation forsummary statistics ,confidence interval s, etc.Techniques of dealing with missing values
*
Imputation (statistics)
*EM imputation, i.e.expectation-maximization imputation: seeExpectation-maximization algorithm )
*full information maximum likelihood estimation
*indicator variable
*Listwise deletion /casewise deletion
*Pairwise deletion
*Mean substitution
*Mplus
*MCAR (missing completely at random)
*Censoring (statistics) Further reading
* Little, R. J. A. & Rubin, D. B.. "Statistical Analysis with Missing Data". John Wiley and Sons, New York, 2002.
* Acock, A. C, "Working With Missing Values", "JOURNAL OF MARRIAGE AND FAMILY", 2005, VOL 67; NUMBER 4, pages 1012-1028
* Jan Van den Broeck, Solveig Argeseanu Cunningham, Roger Eeckels, and Kobus Herbst, "Data Cleaning: Detecting, Diagnosing, and Editing Data Abnormalities", PLoS Med. 2005 October; 2(10): e267. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1198040]References
* [http://www.clustan.com/missing_values.html Missing values]
* [http://www.csc.fi/cschelp/sovellukset/stat/sas/sasdoc/sashtml/lrcon/z1292604.htm Missing values]
* [http://www.cs.hmc.edu/~fleck/envision/user-manual/missing.html Missing values]
* [http://www.psychwiki.com/wiki/Missing_Values Missing Values] , [http://www.psychwiki.com/wiki/Identifying_Missing_Data Identifying Missing Values] , and [http://www.psychwiki.com/wiki/Dealing_with_Missing_Data Dealing with Missing Values]
Wikimedia Foundation. 2010.