Consequentia mirabilis

Consequentia mirabilis

Consequentia mirabilis (Admirable consequence), also known as Clavius's Law, is used in traditional and classical logic to establish the truth of a proposition from the inconsistency of its negation[1]. It is thus similar to reductio ad absurdum, but it can prove a proposition true using just its negation. It states that if a proposition is a consequence of its negation, then it is true, for consistency. It can thus be demonstrated without using any other principle, but that of consistency.

In formal notation:  (\neg A \rightarrow A) \rightarrow A

For example: "There is no truth" (not-A), but this statement implies that it is a truth (A), therefore "there is some truth" (then A is true). Or even: "Nothing exists" implies that there is this statement, so "something there."

The most famous example is perhaps the Cartesian "cogito ergo sum": Even if one can question the validity of the thinking, no one can deny the existence of thought.

Children have an uncanny appreciation for this law, and use it unwittingly on a regular basis: "I'm not talking to you" proves that, in saying this, the person is in fact talking to the other.

It is also known as Clavius' law, after the learned sixteenth century Jesuit Christopher Clavius, one of the designers of the Gregorian calendar, who first drew attention to the law in his commentary on Euclid.

See also

  • Ex falso quodlibet
  • Tertium non datur

References

  1. ^ Sainsbury, Richard. Paradoxes. Cambridge University Press, 2009, p. 128.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Consequentia mirabilis — Die Consequentia mirabilis (bewundernswerte Folgerung), auch als Clavius Gesetz bekannt, wird in der klassischen Logik verwendet, um die Gültigkeit einer Behauptung aus der Ungültigkeit ihrer Negation zu beweisen. Die Argumentation ist verwandt… …   Deutsch Wikipedia

  • List of philosophy topics (A-C) — 110th century philosophy 11th century philosophy 12th century philosophy 13th century philosophy 14th century philosophy 15th century philosophy 16th century philosophy 17th century philosophy 18th century philosophy 19th century philosophy220th… …   Wikipedia

  • ДОКАЗАТЕЛЬСТВО КОСВЕННОЕ —     ДОКАЗАТЕЛЬСТВО КОСВЕННОЕ (непрямое доказательство) доказательство “от противоречащего случая”, такая форма логической аргументации, при которой явно используются дедуктивные свойства противоречия. Обычно выделяют две формы косвенного… …   Философская энциклопедия

  • Giovanni Girolamo Saccheri — (* 5. September 1667 in San Remo, Genua (heute: Italien); † 25. Oktober 1733 in Mailand, Italien) war Jesuit, Philosoph, Theologe und Mathematiker. Biografie Saccheri trat 1685 in den Jesuitenorden ein. Ab 1690 studierte er der Philosophie und… …   Deutsch Wikipedia

  • Liste de locutions latines — Cet article contient une liste de locutions latines présentée par ordre alphabétique. Pour des explications morphologiques et linguistiques générales, consulter l article : Expression latine. Sommaire  A   B … …   Wikipédia en Français

  • 1_ИНОСТРАННЫЕ ТЕРМИНЫ И ВЫРАЖЕНИЯ — Ab ovo (лат.) с самого начала (букв. с яйца). Accidens (лат.) несущественное, случайное, привходящее свойство. Actu; in actu (лат.) актуально, в действии, в действительности. Ad hoc (лат.) для данного случая. Напр., гипотеза ad hoc. Ad hominem,… …   Философская энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”