Viète's formulas

Viète's formulas

:"For Viète's formula for computing π, see that article."In mathematics, more specifically in algebra, Viète's formulas, named after François Viète, are formulas which relate the coefficients of a polynomial to signed sums and products of its roots.

The formulas

Any general polynomial of degree nge 1

:p(X)=a_nX^n + a_{n-1}X^{n-1} +cdots + a_1 X+ a_0

(with the coefficients being real or complex numbers and a_n e 0) is known by the fundamental theorem of algebra to have n (not necessarily distinct) complex roots x_1, x_2, dots, x_n.

Viète's formulas relate the polynomial's coefficients lbrace a_k brace to signed sums and products of its roots lbrace x_i brace as follows:

:egin{cases} x_1 + x_2 + dots + x_{n-1} + x_n = frac{-a_{n-1{a_n} \ (x_1 x_2 + x_1 x_3+cdots + x_1x_n) + (x_2x_3+x_2x_4+cdots + x_2x_n)+cdots + x_{n-1}x_n = frac{a_{n-2{a_n} \vdots \ x_1 x_2 dots x_n = (-1)^n frac{a_0}{a_n}. end{cases}

Equivalently stated, the (n-k)'th coefficient a_{n-k} is related to a signed sum of all possible subproducts of roots, taken k-at-a-time:

: sum_{1le i_1 < i_2 < cdots < i_kle n} x_{i_1}x_{i_2}cdots x_{i_k}=(-1)^kfrac{a_{n-k{a_n}

for each k=1, 2, dots, n (where we wrote the indices {i_k} in increasing order to ensure each subproduct of roots is used exactly once).

Generalization to rings

Viète's formulas hold more generally for polynomials with coefficients in any integral domain, as long as the leading coefficient "a""n" is invertible (so that the divisions make sense) and the polynomial has n distinct roots in that ring. The condition of being an integral domain is needed to assure that a polynomial of degree "n" cannot have more than "n" roots, and that is if has "n" roots then it is determined (up to a scalar) by those roots. However, if one replaces the assumption that "x"1, …, "x""n" are "the roots" of the polynomial by the simpler requirement that one has the relation

:a_nX^n + a_{n-1}X^{n-1} +cdots+ a_1 X + a_0 = a_n(X-x_1)(X-x_2)cdots(X-x_n),

then Viète's formulas even hold in any commutative ring, and they merely express the way the coefficients on the left hand side are formed when expanding the product on the left. Note that the given relation has to be required even in the case of an integral domain, if one wishes to allow some of the roots to coincide, and therefore needs to specify what multiplicity should be associated to each root.

Example

Viète's formulas applied to quadratic and cubic polynomial:

For the second degree polynomial (quadratic) p(X)=aX^2 + bX + c, roots x_1, x_2 of the equation p(X)=0 satisfy: x_1 + x_2 = - frac{b}{a}, quad x_1 x_2 = frac{c}{a}

The first of these equations can be used to find the minimum (or maximum) of "p". See second order polynomial.

For the cubic polynomial p(X)=aX^3 + bX^2 + cX + d, roots x_1, x_2, x_3 of the equation p(X)=0 satisfy: x_1 + x_2 + x_3 = - frac{b}{a}, quad (x_1 x_2 + x_1 x_3 + x_2 x_3) = frac{c}{a}, quad x_1 x_2 x_3 = - frac{d}{a}

Proof

Viète's formulas can be proven by expanding the equality

: a_nX^n + a_{n-1}X^{n-1} +cdots + a_1 X+ a_0 = a_n(X-x_1)(X-x_2)cdots (X-x_n)

(which is true since x_1, x_2, dots, x_n are all the roots of this polynomial), multiplying through the factors on the right-hand side, and identifying the coefficients of each power of X.

ee also

* Newton's identities
* Elementary symmetric polynomial
* Symmetric polynomial
* Properties of polynomial roots

References

*cite book
last = Vinberg
first = E. B.
title = A course in algebra
publisher = American Mathematical Society, Providence, R.I
date = 2003
pages =
isbn = 0821834134

*cite book
last = Djukić
first = Dušan, et al.
coauthors =
title = The IMO compendium: a collection of problems suggested for the International Mathematical Olympiads, 1959-2004
publisher = Springer, New York, NY
date = 2006
pages =
isbn = 0387242996


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Viète — François Viète François Viète d après Daniel ou Jean Rabel Naissance 1540 Fontenay le Comte (France) …   Wikipédia en Français

  • Viète's formula — This article is not about Viète s formulas for symmetric polynomials. In mathematics, the Viète formula, named after François Viète, is the following infinite product type representation of the mathematical constant… …   Wikipedia

  • Viète, François — (1540 1603)    mathematician    Born in Fontenay le Comte, François Viète was a magistrate for whom mathematics was originally just a pastime. Although regarded by his contemporaries as more of a decipherer than a mathematician, he influenced… …   France. A reference guide from Renaissance to the Present

  • Francois Viete — François Viète François Viète, ou François Viette, en latin Franciscus Vieta, est un mathématicien français, né à Fontenay le Comte (Vendée) en 1540 et mort à Paris le 23 février 1603. De famille bourgeoise et de formation juridique, il …   Wikipédia en Français

  • François Viète — d après Daniel ou Jean Rabel Naissance 1540 Fontenay le Comte (France) Décès 23 février 1603 Paris …   Wikipédia en Français

  • François Viète — Infobox Scientist name = Francois Viete box width = image width = caption = Francois Viete, French mathematician birth date = 1540 birth place = Fontenay le Comte, Poitou death date = December, 1603 death place = Paris, France residence =… …   Wikipedia

  • François Viète — François Viète. François Viète (conocido en multitud de textos en español por su nombre latinizado Francisco Vieta) fue un matemático francés (Fontenay le Comte, 1540 París, 1603). Se lo considera uno de los principales precursores del álgebra.… …   Wikipedia Español

  • Fórmula de Viète — En matemáticas, la fórmula de Viète, es una fórmula debida a François Viète, que proporciona una representación del número π como un producto infinito La expresión anterior tiene especial relevancia por ser el primer ejemplo conocido de una ex …   Wikipedia Español

  • Franciscus Vieta — François Viète François Viète, ou François Viette, en latin Franciscus Vieta, est un mathématicien français, né à Fontenay le Comte (Vendée) en 1540 et mort à Paris le 23 février 1603. De famille bourgeoise et de formation juridique, il …   Wikipédia en Français

  • Vieta — François Viète François Viète d après Daniel ou Jean Rabel Naissance 1540 Fontenay le Comte (France) …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”