Enriched Xenon Observatory

Enriched Xenon Observatory

The Enriched Xenon Observatory (EXO) is a particle physics experiment searching for double beta decay of Xenon-136. The experiment uses a large amount of xenon, isotopically enriched in xenon-136. This isotope is theorized to undergo ordinary double beta decay (with the emission of two neutrinos) to barium-136, though past experiments have only placed limits on the half-life.

If neutrinoless double beta decay is detected for the first time, it will be definitive proof of the Majorana nature of neutrinos. EXO intends to measure the effective Majorana neutrino mass (if it exists) with a sensitivity close to 0.01 eV [ [http://dx.doi.org/10.1016/S0370-2693(00)00404-4 "Detection of very small Neutrino Masses in double-beta decay using laser tagging "] ] . The actual measurement will be the rate of events, which is equivalent to a measurement of the half-life. Currently only lower limits exist for both the 2-neutrino and neutrinoless double beta decay modes of Xenon 136. Observation of the 2-neutrino mode does not provide information about neutrinos, though it is interesting for nuclear theory. Measurement of the half-life of the neutrinoless mode can be converted to an "effective neutrino mass" using calculated nuclear matrix elements. If the neutrinoless mode is not seen, a lower limit can be placed on the half life, which corresponds to an upper limit on the neutrino mass.

If a limit on the effective neutrino mass is placed at the 0.01 eV mass range, it answers the question of the ordering of neutrino masses. While the differences between neutrino masses is known, it is not known which neutrino is the heaviest. The effective neutrino mass is dependent on the lightest neutrino mass in such a way that a limit at the 0.01 eV level indicates the neutrino masses lie in the "normal heirarchy". [ [http://pdg.lbl.gov/2007/reviews/betabeta_s076.pdf Particle Data Group Review: Neutrinoless Double-beta decay] ]

EXO currently consists of two facets: a 200-kilogram liquid TPC referred to as 'EXO-200' and R&D efforts into a ton-scale xenon experiment. While EXO-200 serves as a testing ground for liquid Xenon techniques, the ton-scale experiment may take a different form.

EXO-200

EXO-200 uses a cylindrical time projection chamber (TPC) design in order to gather information about the decay. Xenon is a scintillator, so the prompt light provides time information of the event. A large electric field is set up to drive ionization electrons to wires for their collection. The difference in time between the light and the first ionization collection determines the z coordinate of the event, while a grid of wires determines the radial and angular coordinates. Scintillation light is collected by avalanche photodiodes (APDs). [ [http://dx.doi.org/10.1016/j.nima.2007.05.259 "A liquid xenon ionization chamber in an all-fluoropolymer vessel"] ]

EXO-200 has been designed with a goal of less than 40 events per year within two sigma of the Q value. In order to accomplish this, all materials were selected and screened based on radiopurity. Originally the vessel was to be made of teflon, but the final design of the vessel uses thin, ultra-pure copper. [ [http://dx.doi.org/10.1016/j.nima.2008.03.001 "Systematic study of trace radioactive impurities in candidate construction materials for EXO-200"] ]

The relocation of EXO-200 from Stanford to WIPP began in the summer of 2007 [ [http://www.wipp.energy.gov/pr/2007/EXO.pdf "EXO project equipment successfully placed underground at WIPP"] ] . Further assembly and commissioning is expected to continue to the end of 2008 with data taking beginning in 2009.

Ton Scale EXO

A ton scale experiment must overcome many backgrounds. The EXO collaboration is exploring many possibilities to do so, including barium tagging in liquid xenon. Any double beta decay event will leave behind a daughter barium ion, while backgrounds, such as radioactive impurities or neutrons, will not. Requiring a barium ion to be present at the location of the event eliminates all backgrounds. Tagging of a single ion of barium has been demonstrated and progress has been made on a method for extracting ions out of the liquid xenon. One method is using a probe that freezes a layer of xenon, containing the ion, onto its tip [ [http://link.aip.org/link/?RSINAK/79/045101/1 "A microfabricated sensor for thin dielectric layers"] ] . Tagging of barium in gaseous xenon is also being developed.

External links

* [http://www-project.slac.stanford.edu/exo/ EXO web site]

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Majorana-Fermion — Die nach Ettore Majorana benannten Majorana Spinoren dienen in der Elementarteilchenphysik zur mathematischen Beschreibung von Fermionen (d. h. Teilchen mit halbzahligem Spin), wenn diese gleich ihren eigenen Antiteilchen sind: so genannten… …   Deutsch Wikipedia

  • Exo — may refer to: *Endo exo isomerism *Exo *The Enriched Xenon Observatory neutrinoless double beta decay experiment *EXo Platform the open source software (Portal, Enterprise Content Management, WebOS, Collaborative Suite, ...) …   Wikipedia

  • Charles Y. Prescott — (* 1938 in Ponca City, Oklahoma) ist ein US amerikanischer experimenteller Teilchenphysiker. Prescott studierte an der Rice University (Bachelor Abschluss 1961) und am Caltech, wo er 1966 promovierte. Danach war er bis 1970 Forscher am… …   Deutsch Wikipedia

  • EXO — abbr. Enriched Xenon Observatory …   Dictionary of abbreviations

  • Atmosphere of Jupiter — Cloud pattern on Jupiter in 2000 The atmosphere of Jupiter is the largest planetary atmosphere in the Solar System. It is mostly made of molecular hydrogen and helium in roughly solar proportions; other chemical compounds are present only in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”