Brocard points

Brocard points

Brocard points are special points within a triangle. They are named after Henri Brocard (1845 – 1922), a French mathematician.

Definition

In a triangle "ABC" with sides "a", "b", and "c", where the vertices are labeled "A", "B" and "C" in counterclockwise order, there is exactly one point "P" such that the line segments "AP", "BP", and "CP" form the same angle, ω, with the respective sides "c", "a", and "b", namely that

: angle PAB = angle PBC = angle PCA.,

Point "P" is called the first Brocard point of the triangle "ABC", and the angle "ω" is called the Brocard angle of the triangle. The following applies to this angle:

:cotomega = cot alpha + cot eta + cot gamma.,

There is also a second Brocard point, Q, in triangle "ABC" such that line segments "AQ", "BQ", and "CQ" form equal angles with sides "b", "c", and "a" respectively. In other words, the equations angle QCB = angle QBA = angle QAC apply. Remarkably, this second Brocard point has the same Brocard angle as the first Brocard point. In other words angle angle PBC = angle PCA = angle PAB is the same as angle QCB = angle QBA = angle QAC.

The two Brocard points are closely related to one another; In fact, the difference between the first and the second depends on the order in which the angles of triangle "ABC" are taken. So for example, the first Brocard point of triangle "ABC" is the same as the second Brocard point of triangle "ACB".

The two Brocard points of a triangle "ABC" are isogonal conjugates of each other.

Construction

The most elegant construction of the Brocard points goes as follows. In the following example the first Brocard point is presented, but the construction for the second Brocard point is very similar.

Form a circle through points A and B, tangent to edge BC of the triangle (the center of this circle is at the point where the perpendicular bisector of AB meets the line through point B that is perpendicular to BC). Symmetrically, form a circle through points B and C, tangent to edge AC, and a circle through points A and C, tangent to edge AB. These three circles have a common point, the first Brocard point of triangle "ABC". See also Tangent lines to circles.

The three circles just constructed are also designated as epicycles of triangle "ABC". The second Brocard point is constructed in similar fashion.

Trilinears and the Brocard midpoint

Homogeneous trilinear coordinates for the first and second Brocard points are "c"/"b" : "a"/"c" : "b"/"a", and "b"/"c" : "c"/"a" : "a"/"b", respectively. They are an example of a bicentric pair of points, but not triangle centers. Their midpoint, called the Brocard midpoint, has trilinears

:sin("A" + ω) : sin("B" + ω) : sin("C" + ω) [Entry X(39) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] ]

and is a triangle center. The third Brocard point, given by trilinears "a"−3 :" "b−3 : "c"−3, or, equivalently, by

:csc("A" − ω) : csc("B" − ω) : csc("C" − ω), [Entry X(76) in the [http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers] ]

is the Brocard midpoint of the anticomplementary triangle and is also the isotomic conjugate of the symmedian point.

Notes

References

*citation
last1 = Akopyan | first1 = A. V.
last2 = Zaslavsky | first2 = A. A.
title = Geometry of Conics
publisher = American Mathematical Society
series = Mathematical World | volume = 26
year = 2007 | isbn = 978-08218-4323-9
pages = 48–52
.
*citation
first = Ross | last = Honsberger
contribution = Chapter 10. The Brocard Points
title = Episodes in Nineteenth and Twentieth Century Euclidean Geometry
publisher = The Mathematical Association of America | location = Washington, D.C. | year = 1995
.

External links

* [http://mathworld.wolfram.com/ThirdBrocardPoint.html Third Brocard Point] at MathWorld
* [http://forumgeom.fau.edu/FG2003volume3/FG200303.pdf Bicentric Pairs of Points and Related Triangle Centers]
* [http://faculty.evansville.edu/ck6/encyclopedia/BicentricPairs.html Bicentric Pairs of Points]
* [http://mathworld.wolfram.com/BicentricPoints.html Bicentric Points] at MathWorld


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Brocard-Punkt — Brocard Punkte sind spezielle Punkte im Dreieck; benannt nach dem französischen Mathematiker Henri Brocard (1845−1922). Brocard wurde am bekanntesten für den folgenden Satz: In einem Dreieck ΔABC mit den Seiten a,b,c gibt es genau einen Punkt P… …   Deutsch Wikipedia

  • Brocard-Punkte — sind spezielle Punkte im Dreieck; benannt nach dem französischen Mathematiker Henri Brocard (1845−1922). Brocard wurde am bekanntesten für den folgenden Satz: Konstruktion eines Brocard Punkts In einem Dreieck ΔABC mit den Seiten a,b,c gibt es… …   Deutsch Wikipedia

  • Brocard — can refer to: * A legal term * Brocard points, Brocard triangle, Brocard circle, geometrical entities discovered by Henri Brocard. * Henri Brocard, a nineteenth century mathematician. * Saint Brocard, first of the priors of the Carmelite Order… …   Wikipedia

  • Brocard triangle — In geometry, the Brocard triangle of a triangle is a triangle formed by the intersection of line from a vertex to its corresponding Brocard point and a line from another vertex to its corresponding Brocard point and the other two points… …   Wikipedia

  • Brocard circle — In geometry, the Brocard circle (or seven point circle) for a triangle is a circle having a diameter of the line segment between the circumcenter and symmedian. It contains the Brocard points. [mathworld|urlname=BrocardCircle|title=Brocard… …   Wikipedia

  • Points de brocard — En géométrie, le premier point de Brocard d un triangle ABC est le point Ω tels que les angles et orientés positivement soient égaux. Le second point de Brocard du triangle est le point Ω tels que les angles …   Wikipédia en Français

  • Points de Brocard — En géométrie, le premier point de Brocard d un triangle ABC est le point Ω tels que les angles et orientés positivement soient égaux. Le second point de Brocard du triangle est le point Ω tels que les angles …   Wikipédia en Français

  • Cercle de Brocard — En géométrie, le cercle de Brocard d un triangle est le cercle passant par les points de Brocard, le centre du cercle circonscrit et le point de Lemoine[1] . Il a pour diamètre le segment ayant pour extrémités le centre du cercle circonscrit et… …   Wikipédia en Français

  • Brocard — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « Brocard », sur le Wiktionnaire (dictionnaire universel) Brocard est un mot français qui a plusieurs… …   Wikipédia en Français

  • Henri Brocard — Infobox Scientist name = Pierre René Jean Baptiste Henri Brocard image width = 250px caption = The first page of Henri Brocard s Notes de bibliographie des courbes géométriques . birth date = birth date|1845|5|12|df=y birth place = Vignot, France …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”