Hopf–Rinow theorem

Hopf–Rinow theorem

In mathematics, the Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow (1907–1979).

Statement of the theorem

Let (Mg) be a connected Riemannian manifold. Then the following statements are equivalent:

  1. The closed and bounded subsets of M are compact;
  2. M is a complete metric space;
  3. M is geodesically complete; that is, for every p in M, the exponential map expp is defined on the entire tangent space TpM.

Furthermore, any one of the above implies that given any two points p and q in M, there exists a length minimizing geodesic connecting these two points (geodesics are in general extrema, and may or may not be minima).

Variations and generalizations

  • The Hopf–Rinow theorem is generalized to length-metric spaces the following way:
    If a length-metric space (Md) is complete and locally compact then any two points in M can be connected by minimizing geodesic, and any bounded closed set in M is compact.
  • The theorem does not hold in infinite dimensions: (Atkin 1975) showed that two points in an infinite dimensional complete Hilbert manifold need not be connected by a geodesic.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Heinz Hopf — (November 19, 1894 – June 3, 1971) was a German mathematician born in Gräbschen, Germany (now Grabiszyn, part of Wrocław, Poland). He attended Dr. Karl Mittelhaus higher boys school from 1901 to 1904, and then entered the König Wilhelm Gymnasium… …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • List of differential geometry topics — This is a list of differential geometry topics. See also glossary of differential and metric geometry and list of Lie group topics. Contents 1 Differential geometry of curves and surfaces 1.1 Differential geometry of curves 1.2 Differential… …   Wikipedia

  • Riemannian manifold — In Riemannian geometry, a Riemannian manifold ( M , g ) (with Riemannian metric g ) is a real differentiable manifold M in which each tangent space is equipped with an inner product g in a manner which varies smoothly from point to point. The… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • Geodesic — [ great circle arcs.] In mathematics, a geodesic IPA|/ˌdʒiəˈdɛsɪk, ˈdisɪk/ [jee uh des ik, dee sik] is a generalization of the notion of a straight line to curved spaces . In presence of a metric, geodesics are defined to be (locally) the… …   Wikipedia

  • Shape of the Universe — Edge of the Universe redirects here. For the Bee Gees song, see Edge of the Universe (song). The local geometry of the universe is determined by whether Omega is less than, equal to or greater than 1. From top to bottom: a spherical universe, a… …   Wikipedia

  • Exponential map — In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis to all differentiable manifolds with an affine connection. Two important special cases of this are the exponential map …   Wikipedia

  • Intrinsic metric — In the mathematical study of metric spaces, one can consider the arclength of paths in the space. If two points are a given distance from each other, it is natural to expect that one should be able to get from one point to another along a path… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”