- Cabtaxi number
In
mathematics , the "n"-th cabtaxi number, typically denoted Cabtaxi("n"), is defined as the smallest positiveinteger that can be written as the sum of two "positive or negative or 0" cubes in "n" ways. Such numbers exist for all "n" (sincetaxicab number s exist for all "n"); however, only 10 are known OEIS|id=A047696::egin{matrix}mathrm{Cabtaxi}(1)&=&1&=&1^3 pm 0^3end{matrix}
:egin{matrix}mathrm{Cabtaxi}(2)&=&91&=&3^3 + 4^3 \&&&=&6^3 - 5^3end{matrix}
:egin{matrix}mathrm{Cabtaxi}(3)&=&728&=&6^3 + 8^3 \&&&=&9^3 - 1^3 \&&&=&12^3 - 10^3end{matrix}
:egin{matrix}mathrm{Cabtaxi}(4)&=&2741256&=&108^3 + 114^3 \&&&=&140^3 - 14^3 \&&&=&168^3 - 126^3 \&&&=&207^3 - 183^3end{matrix}
:egin{matrix}mathrm{Cabtaxi}(5)&=&6017193&=&166^3 + 113^3 \&&&=&180^3 + 57^3 \&&&=&185^3 - 68^3 \&&&=&209^3 - 146^3 \&&&=&246^3 - 207^3end{matrix}
:egin{matrix}mathrm{Cabtaxi}(6)&=&1412774811&=&963^3 + 804^3 \&&&=&1134^3 - 357^3 \&&&=&1155^3 - 504^3 \&&&=&1246^3 - 805^3 \&&&=&2115^3 - 2004^3 \&&&=&4746^3 - 4725^3end{matrix}
:egin{matrix}mathrm{Cabtaxi}(7)&=&11302198488&=&1926^3 + 1608^3 \&&&=&1939^3 + 1589^3 \&&&=&2268^3 - 714^3 \&&&=&2310^3 - 1008^3 \&&&=&2492^3 - 1610^3 \&&&=&4230^3 - 4008^3 \&&&=&9492^3 - 9450^3end{matrix}
:egin{matrix}mathrm{Cabtaxi}(8)&=&137513849003496&=&22944^3 + 50058^3 \&&&=&36547^3 + 44597^3 \&&&=&36984^3 + 44298^3 \&&&=&52164^3 - 16422^3 \&&&=&53130^3 - 23184^3 \&&&=&57316^3 - 37030^3 \&&&=&97290^3 - 92184^3 \&&&=&218316^3 - 217350^3end{matrix}
:egin{matrix}mathrm{Cabtaxi}(9)&=&424910390480793000&=&645210^3 + 538680^3 \&&&=&649565^3 + 532315^3 \&&&=&752409^3 - 101409^3 \&&&=&759780^3 - 239190^3 \&&&=&773850^3 - 337680^3 \&&&=&834820^3 - 539350^3 \&&&=&1417050^3 - 1342680^3 \&&&=&3179820^3 - 3165750^3 \&&&=&5960010^3 - 5956020^3end{matrix}
:egin{matrix}mathrm{Cabtaxi}(10)&=&933528127886302221000&=&77480130^3 - 77428260^3 \&&&=&41337660^3 - 41154750^3 \&&&=&18421650^3 - 17454840^3 \&&&=&10852660^3 - 7011550^3 \&&&=&10060050^3 - 4389840^3 \&&&=&9877140^3 - 3109470^3 \&&&=&9781317^3 - 1318317^3 \&&&=&9773330^3 - 84560^3 \&&&=&8444345^3 + 6920095^3 \&&&=&8387730^3 + 7002840^3end{matrix}
Cabtaxi(5), Cabtaxi(6) and Cabtaxi(7) were found by
Randall L. Rathbun ; Cabtaxi(8) was found byDaniel J. Bernstein ; Cabtaxi(9) was found by Duncan Moore, using Bernstein's method. Cabtaxi(10) was first reported byChristian Boyer in2006 and verified as Cabtaxi(10) byUwe Hollerbach and reported on theNMBRTHRY mailing list onMay 16 2008 .See also
*
Taxicab number
*Generalized taxicab number External links
* [http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0502&L=nmbrthry&F=&S=&P=55 Announcement of Cabtaxi(9)]
* [http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0805&L=nmbrthry&T=0&P=1284 Announcement of Cabtaxi(10)]
* [http://euler.free.fr/ Cabtaxi at Euler]
Wikimedia Foundation. 2010.