Meander (mathematics)

Meander (mathematics)

In mathematics, a meander or closed meander is a self-avoiding closed curve which intersects a line a number of times. Intuitively, a meander can be viewed as a road crossing a river through a number of bridges.

Contents

Meander

Given a fixed oriented line L in the Euclidean plane R2, a meander of order n is a non-self-intersecting closed curve in R2 which transversally intersects the line at 2n points for some positive integer n. Two meanders are said to be equivalent if they are homeomorphic in the plane.

Examples

The meander of order 1 intersects the line twice:

Meander M1 jaredwf.png

The meanders of order 2 intersect the line four times:

Meander M21 jaredwf.png Meander M22 jaredwf.png

Meandric numbers

The number of distinct meanders of order n is the meandric number Mn. The first fifteen meandric numbers are given below (sequence A005315 in OEIS).

M1 = 1
M2 = 2
M3 = 8
M4 = 42
M5 = 262
M6 = 1828
M7 = 13820
M8 = 110954
M9 = 933458
M10 = 8152860
M11 = 73424650
M12 = 678390116
M13 = 6405031050
M14 = 61606881612
M15 = 602188541928

Open meander

Given a fixed oriented line L in the Euclidean plane R2, an open meander of order n is a non-self-intersecting oriented curve in R2 which transversally intersects the line at n points for some positive integer n. Two open meanders are said to be equivalent if they are homeomorphic in the plane.

Examples

The open meander of order 1 intersects the line once:

OpenMeanderM1.svg

The open meander of order 2 intersects the line twice:

Open Meander M2 jaredwf.png

Open meandric numbers

The number of distinct open meanders of order n is the open meandric number mn. The first fifteen open meandric numbers are given below (sequence A005316 in OEIS).

m1 = 1
m2 = 1
m3 = 2
m4 = 3
m5 = 8
m6 = 14
m7 = 42
m8 = 81
m9 = 262
m10 = 538
m11 = 1828
m12 = 3926
m13 = 13820
m14 = 30694
m15 = 110954

Semi-meander

Given a fixed oriented ray R in the Euclidean plane R2, a semi-meander of order n is a non-self-intersecting closed curve in R2 which transversally intersects the ray at n points for some positive integer n. Two semi-meanders are said to be equivalent if they are homeomorphic in the plane.

Examples

The semi-meander of order 1 intersects the ray once:

Semi-meander M1 jaredwf.png

The semi-meander of order 2 intersects the ray twice:

Meander M1 jaredwf.png

Semi-meandric numbers

The number of distinct semi-meanders of order n is the semi-meandric number Mn (usually denoted with an overline instead of an underline). The first fifteen semi-meandric numbers are given below (sequence A000682 in OEIS).

M1 = 1
M2 = 1
M3 = 2
M4 = 4
M5 = 10
M6 = 24
M7 = 66
M8 = 174
M9 = 504
M10 = 1406
M11 = 4210
M12 = 12198
M13 = 37378
M14 = 111278
M15 = 346846

Properties of meandric numbers

There is an injective function from meandric to open meandric numbers:

Mn = m2n−1

Each meandric number can be bounded by semi-meandric numbers:

MnMnM2n

For n > 1, meandric numbers are even:

Mn ≡ 0 (mod 2)

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Meander (disambiguation) — A meander is a bend in a river. Meander may also refer to: In geography: Meander, Tasmania, Australia Meander River (Tasmania), Australia Meander Valley, Tasmania, Australia Maeander River (or Meander River), a historical name of the Büyük… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Méandre (mathématiques) — Pour les articles homonymes, voir Méandre (homonymie). Un exemple de méandre Un méandre est, en mathématiques, une configuration dans le plan ℝ² formée par deux cou …   Wikipédia en Français

  • 3 (число) — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • 1 (число) — У этого термина существуют и другие значения, см. 1 (значения). 1 один 2 · 1 · 0 · 1 · 2 · 3 · 4 Факторизация: единица Римская запись: I Двоичное: 1 Восьмеричное: 1 Шестнадцатеричное …   Википедия

  • 2 (число) — У этого термина существуют и другие значения, см. 2 (значения). 2 два 1 · 0 · 1 · 2 · 3 · 4 · 5 Факторизация: Простое Римская запись: II Двоичное: 10 Восьмеричное: 2 Шестнадц …   Википедия

  • 8 (число) — 8 восемь 5 · 6 · 7 · 8 · 9 · 10 · 11 Факторизация: 2×2×2 Римская запись: VIII Двоичное: 1000 Восьмеричное: 10 Шестнадцатеричное: 8 …   Википедия

  • 14 (число) — 14 четырнадцать 11 · 12 · 13 · 14 · 15 · 16 · 17 Факторизация: 2×7 Римская запись: XIV Двоичное: 1110 Восьмеричное: 16 Шестнадцатеричное: e …   Википедия

  • 42 (число) — 42 сорок два 39 · 40 · 41 · 42 · 43 · 44 · 45 Факторизация: 2×3×7 Римская запись: XLII Двоичное: 101010 Восьмеричное: 52 Шестнадцатеричное: 2a Нат …   Википедия

  • 81 (число) — 81 восемьдесят один 78 · 79 · 80 · 81 · 82 · 83 · 84 Факторизация: 3×3×3×3 Римская запись: LXXXI Двоичное: 1010001 Восьмеричное: 121 Шестнадцатеричное: 51 …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”