Compactly embedded

Compactly embedded

In mathematics, the notion of being compactly embedded expresses the idea that one set or space is "well contained" inside another. There are versions of this concept appropriate to general topology and functional analysis.

Definition (topological spaces)

Let (XT) be a topological space, and let V and W be subsets of X. We say that V is compactly embedded in W, and write V ⊂⊂ W, if

  • V ⊆ Cl(V) ⊆ Int(W), where Cl(V) denotes the closure of V, and Int(W) denotes the interior of W; and
  • Cl(V) is compact.

Definition (normed spaces)

Let X and Y be two normed vector spaces with norms ||•||X and ||•||Y respectively, and suppose that X ⊆ Y. We say that X is compactly embedded in Y, and write X ⊂⊂ Y, if

If Y is a Banach space, an equivalent definition is that the embedding operator (the identity) i : X → Y is a compact operator.

When applied to functional analysis, this version of compact embedding is usually used with Banach spaces of functions. Several of the Sobolev embedding theorems are compact embedding theorems.

References

  • Adams, Robert A. (1975). Sobolev Spaces. Boston, MA: Academic Press. ISBN 978-0-12-044150-1 .
  • Evans, Lawrence C. (1998). Partial differential equations. Providence, RI: American Mathematical Society. ISBN 0-8218-0772-2. .
  • Renardy, M., & Rogers, R. C. (1992). An Introduction to Partial Differential Equations. Berlin: Springer-Verlag. ISBN 3-540-97952-2. .

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Continuously embedded — In mathematics, one normed vector space is said to be continuously embedded in another normed vector space if the inclusion function between them is continuous. In some sense, the two norms are almost equivalent , even though they are not both… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Helly's selection theorem — In mathematics, Helly s selection theorem states that a sequence of functions that is locally of bounded total variation and uniformly bounded at a point has a convergent subsequence. In other words, it is a compactness theorem for the space… …   Wikipedia

  • Itō diffusion — In mathematics mdash; specifically, in stochastic analysis mdash; an Itō diffusion is a solution to a specific type of stochastic differential equation. Itō diffusions are named after the Japanese mathematician Kiyoshi Itō.OverviewA (time… …   Wikipedia

  • Ehrling's lemma — In mathematics, Ehrling s lemma is a result concerning Banach spaces. It is often used in functional analysis to demonstrate the equivalence of certain norms on Sobolev spaces.tatement of the lemmaLet ( X , || middot;|| X ), ( Y , || middot;|| Y… …   Wikipedia

  • Rellich-Kondrachov theorem — In mathematics, the Rellich Kondrachov theorem is a compact embedding theorem concerning Sobolev spaces. It is named after the Italian Austrian mathematician Franz Rellich. tatement of the theoremLet Ω ⊆ R n be an open, bounded Lipschitz domain,… …   Wikipedia

  • Aubin-Lions lemma — In mathematics, the Aubin Lions lemma is a result in the theory of Sobolev spaces of Banach space valued functions. More precisely, it is a compactness criterion that is very useful in the study of nonlinear evolutionary partial differential… …   Wikipedia

  • Sobolev inequality — In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the… …   Wikipedia

  • Harmonic measure — In mathematics, harmonic measure is a concept that arises in the theory of harmonic functions, where it can be used to estimate the modulus of an analytic function inside a domain D given bounds on the modulus on the boundary of the domain. In a… …   Wikipedia

  • Green measure — In mathematics mdash; specifically, in stochastic analysis mdash; the Green measure is a measure associated to an Itō diffusion. There is an associated Green formula representing suitably smooth functions in terms of the Green measure and first… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”