Varifold

Varifold

In mathematics, a varifold is, loosely speaking, a measure-theoretic generalization of the concept of a differentiable manifold, by replacing differentiability requirements with those provided by rectifiable sets, while maintaining the general algebraic structure usually seen in differential geometry. More closely, varifolds generalize the ideas of a rectifiable current. Varifolds are the topic of study in geometric measure theory.

Definition

Given an open subset Omega of Euclidean space scriptstylemathbb{R}^n, an "m"-dimensional varifold on Omega is defined as a Radon measure on the set

:Omega imes G(n,m)

where G(n,m) is the Grassmannian of all "m"-dimensional linear subspaces of an "n"-dimensional vector space. The Grassmannian is used to allow the construction of analogs to differential forms as duals to vector fields in the approximate tangent space of the set Omega.

References

*


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • varifold — noun A certain generalization of a differentiable manifold …   Wiktionary

  • List of mathematics articles (V) — NOTOC Vac Vacuous truth Vague topology Valence of average numbers Valentin Vornicu Validity (statistics) Valuation (algebra) Valuation (logic) Valuation (mathematics) Valuation (measure theory) Valuation of options Valuation ring Valuative… …   Wikipedia

  • Current (mathematics) — In mathematics, more particularly in functional analysis, differential topology, and geometric measure theory, a k current in the sense of Georges de Rham is a functional on the space of compactly supported differential k forms, on a smooth… …   Wikipedia

  • Tangent measure — In measure theory, tangent measures are used to study the local behavior of Radon measures, in much the same way as tangent spaces are used to study the local behavior of differentiable manifolds. Tangent measures are a useful tool in geometric… …   Wikipedia

  • Frederick Almgren — Frederick Justin Almgren junior (* 3. Juli 1933 in Birmingham, Alabama; † 5. Februar 1997 in Princeton, New Jersey) war ein US amerikanischer Mathematiker, der sich mit Topologie, Variationsrechnung, Differentialgeometrie und Minimalflächen… …   Deutsch Wikipedia

  • Frederick J. Almgren — Frederick Justin Almgren junior (* 3. Juli 1933 in Birmingham, Alabama; † 5. Februar 1997 in Princeton, New Jersey) war ein US amerikanischer Mathematiker, der sich mit Topologie, Variationsrechnung, Differentialgeometrie und Minimalflächen… …   Deutsch Wikipedia

  • Frederick J. Almgren, Jr. — Frederick Justin Almgren junior (* 3. Juli 1933 in Birmingham, Alabama; † 5. Februar 1997 in Princeton, New Jersey) war ein US amerikanischer Mathematiker, der sich mit Topologie, Variationsrechnung, Differentialgeometrie und Minimalflächen… …   Deutsch Wikipedia

  • Frederick Justin Almgren — junior (* 3. Juli 1933 in Birmingham, Alabama; † 5. Februar 1997 in Princeton, New Jersey) war ein US amerikanischer Mathematiker, der sich mit Topologie, Variationsrechnung, Differentialgeometrie und Minimalflächen beschäftigte.… …   Deutsch Wikipedia

  • Frederick J., Jr. Almgren — fut un mathématicien américain. Il est né en 1933, et est mort le 5 février 1997. Ses principales contributions se trouvent dans le calcul des variations. Il fut l un des pionniers à appliquer la théorie de la mesure géométrique à des problèmes… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”