Radonifying function

Radonifying function

In measure theory, a radonifying function (ultimately named after Johann Radon) between measurable spaces is one that takes a cylinder set measure (CSM) on the first space to a true measure on the second space. It acquired its name because the pushforward measure on the second space was historically thought of as a Radon measure.

Definition

Given two separable Banach spaces E and G, a CSM { mu_{T} | T in mathcal{A} (E) } on E and a continuous linear map heta in mathrm{Lin} (E; G), we say that heta is "radonifying" if the push forward CSM (see below) left{ left. left( heta_{*} (mu_{cdot}) ight)_{S} ight| S in mathcal{A} (G) ight} on G "is" a measure, i.e. there is a measure u on G such that::left( heta_{*} (mu_{cdot}) ight)_{S} = S_{*} ( u)for each S in mathcal{A} (G), where S_{*} ( u) is the usual push forward of the measure u by the linear map S : G o F_{S}.

Push forward of a CSM

Because the definition of a CSM on G requires that the maps in mathcal{A} (G) be surjective, the definition of the push forward for a CSM requires careful attention. The CSM::left{ left. left( heta_{*} (mu_{cdot}) ight)_{S} ight| S in mathcal{A} (G) ight}is defined by::left( heta_{*} (mu_{cdot}) ight)_{S} = mu_{S circ heta}if the composition S circ heta : E o F_{S} is surjective. If S circ heta is not surjective, let ilde{F} be the image of S circ heta, let i : ilde{F} o F_{S} be the inclusion map, and define::left( heta_{*} (mu_{cdot}) ight)_{S} = i_{*} left( mu_{Sigma} ight),where Sigma : E o ilde{F} (so Sigma in mathcal{A} (E)) is such that i circ Sigma = S circ heta.

ee also

* Abstract Wiener space


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

  • Sazonov's theorem — In mathematics, Sazonov s theorem is a theorem in functional analysis. It states that a bounded linear operator between two Hilbert spaces is gamma; radonifying if it is Hilbert Schmidt. The result is also important in the study of stochastic… …   Wikipedia

  • Laurent Schwartz — Nacimiento 5 de marzo de 1915 París, Francia Fallecimiento 4 de julio de 2002 París, Francia Nacionalidad …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”