- TINKER
TINKER is a
computer software application formolecular dynamics simulation with a complete and general package formolecular mechanics andmolecular dynamics , with some special features forbiopolymer s. The heart of the TINKER package is a modular set of callable routines which allow the manipulation of coordinates and evaluation of potential energy and derivatives in a straightforward fashion.TINKER works on Windows, Mac, and Unix/Linux and its source code is available free of charge. The code was written in
FORTRAN77 with common extensions and some C. The code is maintained by Jay Ponder at theWashington University School of Medicine .Features
Programs are provided to perform many functions including:
# energy minimization over Cartesian coordinates, torsional angles or rigid bodies via conjugate gradient, variable metric or a truncated Newton method;
# molecular, stochastic, and rigid body dynamics with periodic boundaries and control of temperature and pressure;
# normal mode vibrational analysis;
# distance geometry including an efficient random pairwise metrization;
# building protein and nucleic acid structures from sequence;
#simulated annealing with various cooling protocols;
# analysis and breakdown of single point potential energies;
# verification of analytical derivatives of standard and user defined potentials;
# location of a transition state between two minima;
# full energy surface search via a "Conformation Scanning" method;
# free energy calculations viafree energy perturbation or weighted histogram analysis;
# fitting of intermolecular potential parameters to structural and thermodynamic data; and
# global optimization via energy surface smoothing including an own "Potential Smoothing and Search" (PSS) method.ee also
*
Molecular dynamics
*Molecular geometry References
* P. Ren and J. W. Ponder, Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation, J. Phys. Chem. B, 107, 5933-5947 (2003).
* R. V. Pappu, R. K. Hart and J. W. Ponder, Analysis and Application of Potential Energy Smoothing for Global Optimization, J. Phys. Chem. B, 102, 9725-9742 (1998).
* Y. Kong and J. W. Ponder, Reaction Field Methods for Off-Center Multipoles, J. Chem. Phys., 107, 481-492 (1997).
* M. J. Dudek and J. W. Ponder, Accurate Modeling of the Intramolecular Electrostatic Energy of Proteins, J. Comput. Chem., 16, 791-816 (1995).
* C. E. Kundrot, J. W. Ponder and F. M. Richards, Algorithms for Calculating Excluded Volume and Its Derivatives as a Function of Molecular Conformation and Their Use in Energy Minimization, J. Comput. Chem., 12, 402-409 (1991).
* J. W. Ponder and F. M. Richards, An Efficient Newton-like Method for Molecular Mechanics Energy Minimization of Large Molecules, J. Comput. Chem., 8, 1016-1024 (1987).External links
* [http://dasher.wustl.edu/tinker/ TINKER website]
Wikimedia Foundation. 2010.