Topological abelian group
- Topological abelian group
In mathematics, a topological abelian group, or TAG, is a topological group that is also an abelian group.That is, a TAG is both a group and a topological space, the group operations are continuous, and the group's binary operation is commutative.
The theory of topological groups applies also to TAGs, but more can be done with TAGs. Locally compact TAGs, in particular, are used heavily in harmonic analysis.
ee also
* Haar measure
* Pontryagin duality
* Fourier transform
References
*"Fourier analysis on Groups", by Walter Rudin.
Wikimedia Foundation.
2010.
Look at other dictionaries:
Abelian group — For other uses, see Abelian (disambiguation). Abelian group is also an archaic name for the symplectic group Concepts in group theory category of groups subgroups, normal subgroups group homomorphisms, kernel, image, quotient direct product,… … Wikipedia
Group theory — is a mathematical discipline, the part of abstract algebra that studies the algebraic structures known as groups. The development of group theory sprang from three main sources: number theory, theory of algebraic equations, and geometry. The… … Wikipedia
Group (mathematics) — This article covers basic notions. For advanced topics, see Group theory. The possible manipulations of this Rubik s Cube form a group. In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines … Wikipedia
Group cohomology — This article is about homology and cohomology of a group. For homology or cohomology groups of a space or other object, see Homology (mathematics). In abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well… … Wikipedia
Abelian category — In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of… … Wikipedia
Group object — In category theory, a branch of mathematics, group objects are certain generalizations of groups which are built on more complicated structures than sets. A typical example of a group object is a topological group, a group whose underlying set is … Wikipedia
Group ring — This page discusses the algebraic group ring of a discrete group; for the case of a topological group see group algebra, and for a general group see Group Hopf algebra. In algebra, a group ring is a free module and at the same time a ring,… … Wikipedia
Topological vector space — In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. As the name suggests the space blends a topological structure (a uniform structure to be precise) with the algebraic concept of a… … Wikipedia
Group homomorphism — In mathematics, given two groups ( G , *) and ( H , ·), a group homomorphism from ( G , *) to ( H , ·) is a function h : G → H such that for all u and v in G it holds that: h(u*v) = h(u) h(v) where the group operation on the left hand side of the … Wikipedia
Topological group — Concepts in group theory category of groups subgroups, normal subgroups group homomorphisms, kernel, image, quotient direct product, direct sum semidirect product, wreath product … Wikipedia