Apical ectodermal ridge

Apical ectodermal ridge

The apical ectodermal ridge (AER) is a critical component in vertebrate limb development.cite journal |author=Zakany J, Zacchetti G, Duboule D |title=Interactions between HOXD and Gli3 genes control the limb apical ectodermal ridge via Fgf10 |journal=Dev. Biol. |volume=306 |issue=2 |pages=883–93 |year=2007 |pmid=17467687 |doi=10.1016/j.ydbio.2007.03.517 |url=http://linkinghub.elsevier.com/retrieve/pii/S0012-1606(07)00242-4] The AER is an ectodermal structure overlying and inducing the developing limb bud of the vertebrate embryo, [ [http://cancerweb.ncl.ac.uk/cgi-bin/omd?apical+ectodermal+ridge Definition: apical ectodermal ridge from Online Medical Dictionary ] ] and will eventually give rise to the skin covering the limb. Initial formation of the AER is induced by secretion of the fibroblast growth factor FGF-10 from the somatic layer of the lateral plate mesoderm. This initial induction is believed to result from the activity of Hox genes. The AER then secretes FGF-8 back into the mesoderm, stimulating its proliferation and the formation of the progress zone. Continued secretion of FGF-8 by the AER sustains limb formation throughout the process of development.

The AER also signals to the Zone of Polarizing Activity (ZPA), which establishes the anterior-posterior axis (thumb versus pinky finger) in the limb bud.cite web |url=http://isc.temple.edu/marino/embryology/limbtext.htm |title=Text for Cell Proliferation and Growth |accessdate=2008-01-30 |format= |work=]

AER manipulation experiments

If for any reason the AER is removed or inactivated during development of limb, proliferation in the progress zone will cease resulting in limb truncation and agenesis of distal structures.cite web |url=http://isc.temple.edu/marino/embryology/limbs97/img013.htm |title=Temple |accessdate=2008-01-30 |format= |work=] Transplantation of an AER to another area of mesoderm will only result in formation of an additional limb if the underlying mesoderm has already been induced to give rise to a limb. If the AER is transplanted adjacent to another AER, supernumary structures will result: an additional limb forms as a mirror image next to the already developing limb. The mirror image reflection is a result of the transplanted AER obeying signals from the existing ZPA.

Transplantation of an AER that would give rise to an arm (or wing, as these experiments are commonly performed on chicken embryos) to a limb field developing into a leg does not produce an arm and leg at the same location, but rather two legs. In contrast, transplantation of cells from the progress zone of a developing arm to replace the progress zone of a developing leg will produce a limb with leg structures proximally (femur, knee) and arm structures distally (hand, fingers). Thus it is the mesodermal cells of the progress zone, not the ectodermal cells of the AER, that control the identity of the limb. The development of the proximal-distal axis is controlled by the amount of time cells spend in the progress zone and the expression of Hox genes.

Implantation of a plastic bead soaked in FGF-8 will induce formation of a limb bud in an embryo, but proliferation will cease prematurely unless additional beads are added to maintain appropriate levels of FGF-8. Implantation of sufficient beads can induce formation of a 'normal' additional limb at an arbitrary location in the embryo.

A bead of FGF10 implanted in tissue functions like the AER.

External links

* http://embryology.med.unsw.edu.au/Notes/skmus7a.htm

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • ridge — 1. A (usually rough) linear elevation. SEE ALSO: crest. 2. In dentistry, any linear elevation on the surface of a tooth. 3. The remainder of the alveolar process and its soft …   Medical dictionary

  • Ectrodactyly-ectodermal dysplasia-cleft syndrome — Infobox Disease Name = PAGENAME Caption = DiseasesDB = 34402 ICD10 = ICD9 = ICDO = OMIM = 129900 OMIM mult = OMIM2|604292 | MedlinePlus = eMedicineSubj = eMedicineTopic = MeshID = Ectrodactyly ectodermal dysplasia cleft syndrome, or EEC, is a… …   Wikipedia

  • Cresta ectodérmica apical — Saltar a navegación, búsqueda La cresta ectodérmica apical (AER, por sus siglas en inglés: apical ectodermal ridge) es un componente crítico en el desarrollo de las extremidades.[1] El AER es una estructura ectodérmica que se sitúa sobre el… …   Wikipedia Español

  • Limb development — The tetrapod limb develops from a specific area of the body axis called the limb field. The position of the limb field is associated with and presumably specified by the spatial pattern of Hox gene expression along the body axis. Retinoic acid… …   Wikipedia

  • Cleft hand — Cleft hand, also known as lobster claw hand or split hand,[1] is a rare form of a congenital disorder in which the development of the hand is disturbed. It is a type I failure of formation – longitudinal arrest.[2] The central ray of the hand is… …   Wikipedia

  • Desarrollo de las extremidades — Saltar a navegación, búsqueda Embrión humano de seis semanas …   Wikipedia Español

  • Limb bud — Infobox Embryology Name = PAGENAME Latin = GraySubject = GrayPage = Caption = Caption2 = System = CarnegieStage = Days = 29 Precursor = lateral plate mesoderm GivesRiseTo = MeshName = MeshNumber = DorlandsPre = DorlandsSuf = In embryology, the… …   Wikipedia

  • Ectrodactyly — Ectrodactyly, sometimes referred to as the “Lobster Claw Syndrome”[1] involves the deficiency or absence of one or more central digits of the hand or foot and is also known as split hand/split foot malformation (SHFM).[2] The hands and feet of… …   Wikipedia

  • Split-hand/split-foot malformation — A genetic malformation syndrome of the limbs with syndactyly, median clefts of the hands and feet, and aplasia (failure of development) and/or hypoplasia (underdevelopment) of the phalanges (the digits), the metacarpals (the bones leading up to… …   Medical dictionary

  • Hallux — Dedos gordos en la escultura …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”