Action at a distance (physics)

Action at a distance (physics)

In physics, action at a distance is the interaction of two objects which are separated in space with no known mediator of the interaction. This term was used most often with early theories of gravity and electromagnetism to describe how an object could "know" the mass (in the case of gravity) or charge (in electromagnetism) of another distant object.

Electricity

Coulomb's law in electrostatics appears to be a theory with action-at-a-distance - Coulomb's law deals with charges which have always been static. Efforts to develop a theory of interaction between moving charges, electrodynamics, led to the necessity to introduce the concept of a field with physical properties. In the theory of electrodynamics as formulated in Maxwell's equations, interactions between moving charges are mediated by propagating deformations of an electromagnetic field. These deformations propagate with the speed of light and Maxwell's wave theory was later extended to cover Coulomb's law by the Lorenz gauge. The deformations of the field can carry momentum independently, thus facilitating conservation of angular momentum.

Gravity

: "Main article: Speed of gravity"

Newton

Newton's theory of gravity offered no prospect of identifying any mediator of gravitational interaction. His theory assumed that gravitation acts instantaneously, regardless of distance. Newton had shown mathematically that if the gravitational interaction is not instantaneous, angular momentum is not conserved, and Kepler's observations gave strong evidence that in planetary motion angular momentum is conserved. (The mathematical proof is only valid in the case of an Euclidean geometry.)

A related question, raised by Ernst Mach, was how rotating bodies know how much to bulge at the equator. How do they know their rate of rotation? This, it seems, requires an action-at-a-distance from distant matter, informing the rotating object about the state of the universe. Einstein coined the term Mach's principle for this question.

Einstein

According to Albert Einstein's theory of special relativity, instantaneous action-at-a-distance was seen to violate the relativistic upper limit on speed of propagation of information. If one of the interacting objects were suddenly displaced from its position, the other object would feel its influence instantaneously, meaning information had been transmitted faster than the speed of light.

One of the conditions that a relativistic theory of gravitation must meet is to be mediated with a speed that does not exceed lightspeed. It could be seen from the previous success of electrodynamics that the relativistic theory of gravitation would have to use the concept of a field or something similar.

This problem has been resolved by Einstein's theory of general relativity in which gravitational interaction is mediated by deformation of space-time geometry. Matter warps the geometry of space-time and these effects are, as with electric and magnetic fields, propagated at the speed of light. Thus, in the presence of matter, space-time becomes non-Euclidean, resolving the apparent conflict between Newton's proof of the conservation of angular momentum and Einstein's theory of special relativity. Mach's question regarding the bulging of rotating bodies is resolved because local space-time geometry is informing a rotating body about the rest of the universe. In Newton's theory of motion, space acts on objects, but is not acted upon. In Einstein's theory of motion, matter acts upon space-time geometry, deforming it, and space-time geometry acts upon matter.

Quantum mechanics

Current physical theories incorporate the upper limit on propagation of interaction as one of their basic building blocks, hence ruling out instantaneous action-at-a-distance. However, the correlations between separated particles in quantum entanglement proved difficult to understand in terms of a classical picture that obeyed locality, with Einstein coining the term "spooky action at a distance" to describe these situations. Relativistic quantum field theory requires interactions to propagate at speeds less than or equal to the speed of light, so "quantum entanglement" cannot be used for faster-than-light-speed propagation of matter, energy, or information. Measurements of one particle will be correlated with measurements on the other particle, but this is only known after the experiment is performed and notes are compared, therefore there is no way to actually send "information" faster than the speed of light. Einstein could not believe this, and therefore he proposed, along with Boris Podolsky and Nathan Rosen, a thought experiment called the EPR paradox. John Bell derived an inequality that showed a testable difference between the predictions of quantum mechanics and local hidden variables theories. Experiments testing Bell-type inequalities in situations analogous to EPR's thought experiments have been consistent with the predictions of quantum mechanics, showing that local hidden variables theories can be ruled out. Whether or not this is interpreted as evidence for nonlocality depends on one's interpretation of quantum mechanics; for example, the Bohm interpretation does give a non-local explanation for the correlations seen in entanglement, but many advocates of the many-worlds interpretation argue that it can explain these correlations in a way that does not require a violation of locality, [http://arxiv.org/abs/quant-ph/0103079] by allowing measurements to have non-unique outcomes.

ee also

* quantum teleportation

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Action at a distance — may refer to: * Action at a distance (physics), the instantaneous interaction of two objects which are separated in space * Action at a distance (computer science), an anti pattern …   Wikipedia

  • Action at a distance (computer science) — Action at a distance is an anti pattern (a recognized common error) in which behavior in one part of a program varies wildly based on difficult or impossible to identify operations in another part of the program.The way to avoid the problems… …   Wikipedia

  • action at a distance — Contested concept in the history of physics. Aristotelian physics holds that every motion requires a conjoined mover. Action can therefore never occur at a distance, but needs a medium enveloping the body, and which parts before its motion and… …   Philosophy dictionary

  • physics — /fiz iks/, n. (used with a sing. v.) the science that deals with matter, energy, motion, and force. [1580 90; see PHYSIC, ICS] * * * I Science that deals with the structure of matter and the interactions between the fundamental constituents of… …   Universalium

  • physics, philosophy of — Aristotle distinguishes seven meanings of the Greek word physis, settling on it as the essence of things that have a source of movement within themselves. The world, for Aristotle, is a world of self moving or self developing things, and physis… …   Philosophy dictionary

  • Physics — (Greek: physis φύσις), in everyday terms, is the science of matter [R. P. Feynman, R. B. Leighton, M. Sands (1963), The Feynman Lectures on Physics , ISBN 0 201 02116 1 Hard cover. p.1 1 Feynman begins with the atomic hypothesis.] and its motion …   Wikipedia

  • Distance — This article is about distance in the mathematical or physical sense. For other senses of the term, see distance (disambiguation). Proximity redirects here. For the 2001 film, see Proximity (film). Distance (or farness) is a numerical description …   Wikipedia

  • Action role-playing game — Not to be confused with Live action role playing game …   Wikipedia

  • Physics of firearms — From the viewpoint of physics (dynamics, to be exact), a firearm, as for most weapons, is a system for delivering maximum destructive energy to the target with minimum delivery of energy on the shooter. The force and momentum delivered to the… …   Wikipedia

  • Physics of flying discs — A flying disc can fly through the air because of its shape, weight, initial direction of throw, and spin. The successful flight of a particular disc is determined by these variables as well as others such as deformation.uitability of a discA disc …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”