Spline interpolation

Spline interpolation

In the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. Spline interpolation is preferred over polynomial interpolation because the interpolation error can be made small even when using low degree polynomials for the spline. Spline interpolation avoids the problem of Runge's phenomenon which occurs when interpolating between equidistant points with high degree polynomials.

Contents

Introduction

Elastic rulers that were bent to pass through a number of predefined points (the "knots") were used for making technical drawings for shipbuilding and construction by hand, as illustrated by figure 1.

Figure 1: Interpolation with cubic splines between eight points. Hand-drawn technical drawings were made for ship-building etc. using flexible rulers that were bent to follow pre-defined points (the "knots")

The approach to mathematically model the shape of such elastic rulers fixed by n+1 "knots" (x_i,y_i)\quad i=0,1,\cdots ,n is to interpolate between all the pairs of "knots" (x_{i-1}\ ,\ y_{i-1}) and (x_i\ ,\ y_i) with polynomials y=q_i(x) \quad i=1,2,\cdots ,n

The curvature of a curve

y = f(x)

is

\kappa= \frac{y''}{(1+y'^2)^{3/2}}

As the elastic ruler will take a shape that minimizes the bending under the constraint of passing through all "knots" both y' and y'' will be continuous everywhere, also at the "knots". To achieve this one must have that

q'i(xi) = q'i + 1(xi)

and that

q''i(xi) = q''i + 1(xi)

for all i , 1 \le i \le n-1. This can only be achieved if polynomials of degree 3 or higher are used. The classical approach is to use polynomials of degree 3, this is the case of "Cubic splines".

Algorithm to find the interpolating cubic spline

A third order polynomial q(x) for which

q(x1) = y1
q(x2) = y2
q'(x1) = k1
q'(x2) = k2

can be written in the symmetrical form

q\ =\ (1-t)\ y_1 +\ t\ y_2\ +\ t\ (1-t)\ (a\ (1-t) + b\ t)

 

 

 

 

(1)

where

t=\frac{x-x_1}{x_2-x_1}

 

 

 

 

(2)

and

a = k1(x2x1) − (y2y1)

 

 

 

 

(3)

b = − k2(x2x1) + (y2y1)

 

 

 

 

(4)


As q^'= \frac{d q}{d x} = \frac{d q}{d t} \ \frac{d t}{d x} = \frac{d q}{d t} \ \frac{1}{x_2-x_1} one gets that

q^'\ =\frac {y_2-y_1}{x_2-x_1} +(1-2t)\ \frac {a\ (1-t) + b\ t}{x_2-x_1}\  +\ \ t\ (1-t)\ \frac {b-a}{x_2-x_1}

 

 

 

 

(5)

q^{''}=2\frac {b-2a+(a-b)3t}{{(x_2-x_1)}^2}

 

 

 

 

(6)

Setting x = x1 and x = x2 in (5) and (6) one gets from (2) that indeed q'(x1) = k1 , q'(x2) = k2 and that

q^{''}(x_1)=2\frac {b-2a}{{(x_2-x_1)}^2}

 

 

 

 

(7)

q^{''}(x_2)=2\frac {a-2b}{{(x_2-x_1)}^2}

 

 

 

 

(8)

If now

(x_i,y_i)\quad i=0,1,\cdots ,n

are n+1 points and

q_i\ =\ (1-t)\ y_{i-1} +\ t\ y_i\ +\ t\ (1-t)\ (a_i\ (1-t) + b_i\ t)\quad i=1,\cdots ,n

 

 

 

 

(9)

where

t=\frac{x-x_{i-1}}{x_i-x_{i-1}}

are n third degree polynomials interpolating y in the interval x_{i-1} \le x<x_i \le , for i=1,\cdots ,n such that

q^'_i(x_i)=q^'_{i+1}(x_i)

for i=1,\cdots ,n-1

then the n polynomials together define a derivable function in the interval x_0 \le x \le x_n and

ai = ki − 1(xixi − 1) − (yiyi − 1)

 

 

 

 

(10)

bi = − ki(xixi − 1) + (yiyi − 1)

 

 

 

 

(11)

for i=1,\cdots ,n where

k_0=q_1^'(x_0)

 

 

 

 

(12)

k_i=q_i^'(x_i)=q_{i+1}^'(x_i) \quad i=1,\cdots ,n-1

 

 

 

 

(13)

k_n=q_n^'(x_n)

 

 

 

 

(14)

If the sequence k_0,k_1, \cdots ,k_n is such that in addition

q^{''}_i(x_i)=q^{''}_{i+1}(x_i)

for i=1,\cdots ,n-1

the resulting function will even have a continuous second derivative.

From (7), (8), (10) and (11) follows that this is the case if and only if

\frac {k_{i-1}}{x_i-x_{i-1}} + \left(\frac {1}{x_i-x_{i-1}}+ \frac {1}{{x_{i+1}-x_i}}\right)\ 2k_i+
\frac {k_{i+1}}{{x_{i+1}-x_i}} =
   3\ \left(\frac {y_i - y_{i-1}}{{(x_i-x_{i-1})}^2}+\frac {y_{i+1} - y_i}{{(x_{i+1}-x_i)}^2}\right)

 

 

 

 

(15)

for i=1,\cdots ,n-1

The relations (15) are n-1 linear equations for the n+1 values k_0,k_1, \cdots ,k_n.

For the elastic rulers being the model for the spline interpolation one has that to the left of the left-most "knot" and to the right of the right-most "knot" the ruler can move freely and will therefore take the form of a straight line with q'' = 0. As q'' should be a continuous function of x one gets that for "Natural Splines" one in addition to the n-1 linear equations (15) should have that

q^{''}_i(x_0)\ =2\ \frac {3(y_1 - y_0)-(k_1+2k_0)(x_1-x_0)}{{(x_1-x_0)}^2}=0
q^{''}_n(x_n)\ =-2\ \frac {3(y_n - y_{n-1})-(2k_n+k_{n-1})(x_n-x_{n-1})}{{(x_n-x_{n-1})}^2}=0

i.e. that

\frac{2}{x_1-x_0} k_0\ +\frac{1}{x_1-x_0}k_1 = 3\ \frac{y_1-y_0}{(x_1-x_0)^2}

 

 

 

 

(16)

\frac{1}{x_n-x_{n-1}}k_{n-1}\ +\frac{2}{x_n-x_{n-1}}k_n = 3\ \frac{y_n-y_{n-1}}{(x_n-x_{n-1})^2}

 

 

 

 

(17)

(15) together with (16) and (17) constitute n+1 linear equations that uniquely define the n+1 parameters k_0,k_1, \cdots ,k_n

Example

Figure 2: Interpolation with cubic "natural" splines between three points.

In case of three points the values for k0,k1,k2 are found by solving the linear equation system


\begin{bmatrix}
a_{11} & a_{12} & 0       \\
a_{21} & a_{22} & a_{23}  \\
0      & a_{32} & a_{33}  \\
\end{bmatrix}
\begin{bmatrix}
k_0 \\
k_1 \\
k_2 \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\end{bmatrix}

with

a_{11}=\frac{2}{x_1-x_0}
a_{12}=\frac{1}{x_1-x_0}
a_{21}=\frac{1}{x_1-x_0}
a_{22}=2\ \left(\frac {1}{x_1-x_0}+ \frac {1}{{x_2-x_1}}\right)
a_{23}=\frac {1}{{x_2-x_1}}
a_{32}=\frac{1}{x_2-x_1}
a_{33}=\frac{2}{x_2-x_1}
b_1=3\ \frac{y_1-y_0}{(x_1-x_0)^2}
b_2=3\ \left(\frac {y_1 - y_0}{{(x_1-x_0)}^2}+\frac {y_2 - y_1}{{(x_2-x_1)}^2}\right)
b_3=3\ \frac{y_2-y_1}{(x_2-x_1)^2}

For the three points

(-1,0.5)\ ,\ (0,0)\ ,\ (3,3)

one gets that

k_0=-0.6875\ ,\ k_1=-0.1250\ ,\ k_2=1.5625

and from (10) and (11) that

a1 = k0(x1x0) − (y1y0) = − 0.1875
b1 = − k1(x1x0) + (y1y0) = − 0.3750
a2 = k1(x2x1) − (y2y1) = − 3.3750
b2 = − k2(x2x1) + (y2y1) = − 1.6875

In figure 2 the spline function consisting of the two cubic polynomials q1(x) and q2(x) given by (9) is displayed


See also

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Spline-Interpolation —   [ splaɪn ; spline englisch »Straklatte«, »Kurvenlineal«], ein mathematisches Interpolationsverfahren, bei dem durch die n Punkte der Ebene (x1, y1), (x2, y2),. .., (x …   Universal-Lexikon

  • Spline-Interpolation — Beispiel eines Splines mit 8 Knoten Bei der Spline Interpolation versucht man, gegebene Stützstellen, auch Knoten genannt, mit Hilfe stückweise stetiger Polynome, genauer Splines, zu interpolieren. Während das Ergebnis einer Polynominterpolation… …   Deutsch Wikipedia

  • Interpolation (mathématiques) — Interpolation numérique En analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l interpolation est une opération mathématique permettant de construire une courbe à partir de la donnée d un nombre fini de… …   Wikipédia en Français

  • Interpolation Numérique — En analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l interpolation est une opération mathématique permettant de construire une courbe à partir de la donnée d un nombre fini de points, ou une fonction à …   Wikipédia en Français

  • Interpolation numerique — Interpolation numérique En analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l interpolation est une opération mathématique permettant de construire une courbe à partir de la donnée d un nombre fini de… …   Wikipédia en Français

  • Spline — 〈[splaın] f. 10; EDV〉 durch Kontrollpunkte bestimmte, mit minimaler Krümmung verlaufende Kurve, die mathematisch beschreibbar ist ● Spline Interpolation [engl., „Kurvenlineal“, eigtl. „Keil; Metall , Holzfeder“] * * * Spline   [von engl. spline… …   Universal-Lexikon

  • Spline (mathematics) — A quadratic spline composed of six polynomial segments. Between point 0 and point 1 a straight line. Between point 1 and point 2 a parabola with second derivative = 4. Between point 2 and point 3 a parabola with second derivative = 2. Between… …   Wikipedia

  • Interpolation — In the mathematical subfield of numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of known data points. In engineering and science one often has a number of data points, as obtained… …   Wikipedia

  • Interpolation (Mathematik) — In der numerischen Mathematik bezeichnet der Begriff Interpolation eine Klasse von Problemen und Verfahren. Zu gegebenen diskreten Daten (z. B. Messwerten) soll eine stetige Funktion (die sogenannte Interpolante oder Interpolierende)… …   Deutsch Wikipedia

  • Spline — Beispiel eines Splines mit 8 Knoten Geflecht: Die Querstreben verhalten …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”