Ramanujan's sum

Ramanujan's sum

:"This article is not about Ramanujan summation."

In number theory, a branch of mathematics, Ramanujan's sum, usually denoted "c""q"("n"), is a function of two positive integer variables "q" and "n" defined by the formula

:c_q(n)=sum_{a=1atop (a,q)=1}^qe^{2 pi i frac{a}{q} n},

where ("a","q") = 1 means that "a" only takes on values coprime to "q".

Srinivasa Ramanujan introduced the sums in a 1918 paper. [Ramanujan, S. "On Certain Trigonometric Sums and their Applications in the Theory of Numbers", "Transactions of the Cambridge Philosophical Society", 22, No. 15, (1918), pp 259-276. (pp. 179-199 of his "Collected Papers".) He says "These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.", and in a footnote references pp. 360-370 of the Dirichlet-Dedekind "Vorlesungen über Zahlentheorie", 4th ed.]

Notation

For integers a and b, amid b is read "a" divides "b" and means that there is an integer c such that b=ac. Similarly, a mid b is read "a" does not divide "b". The summation symbol sum_{d,mid,m}f(d) means that "d" goes through all the positive divisors of "m", e.g.:sum_{d,mid,12}f(d) = f(1) + f(2) + f(3) + f(4) + f(6) + f(12).

(a,b) is the greatest common divisor,

phi(n) is Euler's totient function,

mu(n) is the Möbius function, and

zeta(s) is the Riemann zeta function.

Formulas for "c""q"("n")

Trigonometric

These formulas come from the definition, Euler's formula e^{ix}= cos x + i sin x, and elementary trig identities.

:c_1(n) = 1

:c_2(n)=cos npi

:c_3(n)=2cos frac23 npi

:c_4(n)=2cos frac12 npi

:c_5(n)=2cos frac25 npi + 2cos frac45 npi

:c_6(n)=2cos frac13 npi

:c_7(n)=2cos frac27 npi + 2cos frac47 npi + 2cos frac67 npi

:c_8(n)=2cos frac14 npi + 2cos frac34 npi

:c_9(n)=2cos frac29 npi + 2cos frac49 npi + 2cos frac89 npi

:c_{10}(n)=2cos frac15 npi + 2cos frac35 npi

and so on. They show that "c""q"("n") is always real.

Kluyver

Let zeta_q=e^{frac{2pi i}{q.

Then ζ"q" is a root of the equation "x""q" – 1 = 0. Each of its powers ζ"q", ζ"q"2, ... ζ"q""q" = ζ"q"0 = 1 is also a root. Therefore, since there are "q" of them, they are all of the roots. The numbers ζ"q""n" where 1 ≤ "n" ≤ "q" are called the "q" th roots of unity. ζ"q" is called a primitive "q" th root of unity because the smallest value of "n" that makes ζ"q""n" = 1 is "q". The other primitive "q" th roots of are the numbers ζ"q""a" where ("a", "q") = 1. Therefore, there are φ("q") primitive "q" th roots of unity.

Thus, the Ramanujan sum "c""q"("n") is the sum of the "n" th powers of the primitive "q" th roots of unity.

It is a fact that the powers of ζ"q" are precisely the primitive roots for all the divisors of "q".

For example, let "q" = 12. Then

:ζ12, ζ125, ζ127, and ζ1211 are the primitive twelfth roots of unity,

:ζ122 and ζ1210 are the primitive sixth roots of unity,

:ζ123 = "i" and ζ129 = −"i" are the primitive fourth roots of unity,

:ζ124 and ζ128 are the primitive third roots of unity,

:ζ126 = −1 is the primitive second root of unity, and

:ζ1212 = 1 is the primitive first root of unity.

Therefore, if :eta_q(n) = sum_{k=1}^q zeta_q^{kn}

is the sum of the "n" th powers of all the roots, primitive and imprimitive,

:eta_q(n) = sum_{d,mid, q} c_d(n),

and by Möbius inversion,

:c_q(n) = sum_{d,mid,q} muleft(frac{q}d ight)eta_d(n).

It follows from the identity "x""q" – 1 = ("x" – 1)("x""q"–1 + "x""q"–2 + ... + "x" + 1) that

:eta_q(n) = egin{cases}&0mbox{ if }q mid n\&qmbox{ if }qmid n\end{cases}

and this leads to the formula

:c_q(n)=sum_{d,mid,(q,n)}muleft(frac{q}{d} ight) d, published by Kluyver in 1906. [Ramanujan, "Papers", notes p. 343]

This shows that "c""q"("n") is always an integer. Compare it with phi(q)=sum_{d,mid,q}muleft(frac{q}{d} ight) d.

von Sterneck

It is easily shown from the definition that "c""q"("n") is multiplicative when considered as a function of "q" for a fixed value of "n": i.e.

:mbox{If } (q,r) = 1 mbox{ then } c_q(n)c_r(n)=c_{qr}(n).

From the definition (or Kluyver's formula) it is straightforward to prove that, if "p" is a prime number,

:c_p(n) = egin{cases}-1 &mbox{ if }p mid n\phi(p)&mbox{ if }pmid n\end{cases},

and if "p""k" is a prime power where "k" > 1,

:c_{p^k}(n) = egin{cases}0 &mbox{ if }p^{k-1} mid n\-p^{k-1} &mbox{ if }p^{k-1}mid n mbox{ and }p^k mid n\phi(p^k) &mbox{ if }p^kmid n\end{cases}.

This result and the multiplicative property can be used to prove :c_q(n)=muleft(frac{q}{(q, n)} ight)frac{phi(q)}{phileft(frac{q}{(q, n)} ight)}. This is called von Sterneck's arithmetic function. [Ramanujan, "Papers", notes p. 371]

Other properties of "c""q"("n")

For all positive integers "q",

:c_1(q) = 1, mbox{ } c_q(1) =mu(q), mbox{ and } c_q(q) =phi(q).

:mbox{If }m equiv n pmod qmbox{ then }c_q(m) = c_q(n).

For a fixed value of "q" both of the sequences "c""q"(1), "c""q"(2), ... and "c"1("q"), "c"2("q"), ... remain bounded.

If "q" > 1

:sum_{n=a}^{a+q-1} c_q(n)=0.

Table

Ramanujan expansions

If "f"("n") is an arithmetic function (i.e. a complex-valued function of the integers or natural numbers), then a convergent infinite series of the form

:f(n)=sum_{q=1}^infty a_q c_q(n) where the "a""q" are complex numbers, or of the form

:f(q)=sum_{n=1}^infty a_n c_q(n) where the "a""n" are complex numbers,

is called a Ramanujan expansion [Ramanujan, "Papers", notes pp. 369-371] of "f"("n"). Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence). [Ramanujan, op. cit.; Hardy, ch. IX (pp. 132-160); Hardy & Wright, Thms 292-293 (pp.250-251); Knopfmacher, ch. 7 (pp. 183-216)]

The expansion of the zero function depends on a result from the analytic theory of prime numbers, namely that the series sum_{n=1}^inftyfrac{mu(n)}{n} converges to 0, and the results for "r"("n") and "r"′("n") depend on theorems in an earlier paper. [Ramanujan, S., "On Certain Arithmetical Functions", "Transactions of the Cambridge Philosophical Society", 22 No. 9, (1916), 159-184; "Collected Papers" pp. 136-163]

All the formulas in this section are from Ramanujan's 1918 paper.

Generating functions

The generating functions of the Ramanujan sums are Dirichlet series.

:zeta(s)sum_{delta,mid,q}muleft(frac{q}{delta} ight)delta^{1-s} =sum_{n=1}^inftyfrac{c_q(n)}{n^s}

is a generating function for the sequence "c""q"(1), "c""q"(2), ... where "q" is kept constant and

:frac{sigma_{r-1}(n)}{n^rzeta(r)}=sum_{q=1}^inftyfrac{c_q(n)}{q^{r

is a generating function for the sequence "c"1("n"), "c"2("n"), ... where "n" is kept constant.

There is also the double Dirichlet series

:frac{zeta(s) zeta(r+s-1)}{zeta(r)}= sum_{q=1}^infty sum_{n=1}^infty frac{c_q(n)}{q^r n^s}.

σ"k"("n")

σ"k"("n") is the divisor function (i.e. the sum of the "k"th powers of the divisors of "n", including 1 and "n"). σ0(n), the number of divisors of "n", is usually written "d"("n") and σ1(n), the sum of the divisors of "n", is usually written σ("n").

If "s" > 0,

:sigma_s(n)=n^szeta(s+1)left(frac{c_1(n)}{1^{s+1+frac{c_2(n)}{2^{s+1+frac{c_3(n)}{3^{s+1+dots ight)

and

:sigma_{-s}(n)=zeta(s+1)left(frac{c_1(n)}{1^{s+1+frac{c_2(n)}{2^{s+1+frac{c_3(n)}{3^{s+1+dots ight).

Setting "s" = 1 gives

:sigma(n)=frac{pi^2}{6}nleft(frac{c_1(n)}{1}+frac{c_2(n)}{4}+frac{c_3(n)}{9}+dots ight) .

If the Riemann hypothesis is true, and - frac12

:egin{align}sigma_s(n)&=zeta(1-s)left(frac{c_1(n)}{1^{1-s+frac{c_2(n)}{2^{1-s+frac{c_3(n)}{3^{1-s+dots ight)\

&=n^szeta(1+s)left(frac{c_1(n)}{1^{1+s+frac{c_2(n)}{2^{1+s+frac{c_3(n)}{3^{1+s+dots ight).\end{align}

"d"("n")

"d"("n") = σ0("n") is the number of divisors of "n", including 1 and "n" itself.

:-d(n)=frac{log 1}{1}c_1(n)+frac{log 2}{2}c_2(n)+frac{log 3}{3}c_3(n)+dots

and

:-d(n)(2gamma+log n)=frac{log^2 1}{1}c_1(n)+frac{log^2 2}{2}c_2(n)+frac{log^2 3}{3}c_3(n)+dots

where γ = 0.5772... is the Euler–Mascheroni constant.

φ("n")

Euler's totient function φ("n") is the number of positive integers less than "n" and coprime to "n".

Ramanujan defines a generalization of it: if n=p_1^{a_1}p_2^{a_2}p_3^{a_3}dots is the prime factorization of "n", and "s" is a complex number, let:phi_s(n)=n^s(1-p_1^{-s})(1-p_2^{-s})(1-p_3^{-s})dots, so that φ1(n) = φ(n) is Euler's function.

He proves that

:frac{mu(n)n^s}{phi_s(n)zeta(s)}=sum_{ u=1}^infty frac{mu(m u)}{ u^s}

and uses this to show that

:frac{phi_s(n)zeta(s+1)}{n^s}=frac{mu(1)c_1(n)}{phi_{s+1}(1)}+frac{mu(2)c_2(n)}{phi_{s+1}(2)}+frac{mu(3)c_3(n)}{phi_{s+1}(3)}+dots.

Letting "s" = 1,

:

egin{align}

phi(n) =

frac{6}{pi^2}n

Big(c_1(n)

&-frac{c_2(n)}{2^2-1}-frac{c_3(n)}{3^2-1}-frac{c_5(n)}{5^2-1} \

&+frac{c_6(n)}{(2^2-1)(3^2-1)}-frac{c_7(n)}{7^2-1}+frac{c_{10}(n)}{(2^2-1)(5^2-1)}-dots Big).\end{align}

Note that the constant is the inverse of the one in the formula for σ("n").

Λ("n")

Von Mangoldt's function Λ(n) is zero unless "n" = "p""k" is a power of a prime number, in which case it is the natural logarithm log "p".

:-Lambda(m) = c_m(1)+frac12c_m(2)+frac13c_m(3)+dots

Zero

:0=c_1(n)+frac12c_2(n)+frac13c_3(n)+dots

This is equivalent to the prime number theorem.

"r"2"s"("n") (sums of squares)

"r"2"s"("n") is the number of way of representing "n" as the sum of 2"s" squares, counting different orders and signs as different (e.g., "r"2(13) = 8, as 13 = (±2)2 + (±3)2 = (±3)2 + (±2)2.)

Ramanujan defines a function δ2"s"("n") and references a paper [Ramanujan, S., "On Certain Arithmetical Functions", "Transactions of the Cambridge Philosophical Society", 22 No. 9, (1916), 159-184; "Collected Papers" pp. 136-163] in which he proved that "r"2"s"("n") = δ2"s"("n") for "s" = 1, 2, 3, and 4. For "s" > 4 he shows that δ2"s"("n") is a good approximation to "r"2"s"("n").

"s" = 1 has a special formula:

:delta_2(n)=pileft(frac{c_1(n)}{1}-frac{c_3(n)}{3}+frac{c_5(n)}{5}-dots ight)

In the following formulas the signs repeat with a period of 4.

If "s" ≡ 0 (mod 4),:delta_{2s}(n)=frac{pi^s n^{s-1{(s-1)!}left(frac{c_1(n)}{1^s}+frac{c_4(n)}{2^s}+ frac{c_3(n)}{3^s}+ frac{c_8(n)}{4^s}+frac{c_5(n)}{5^s}+frac{c_{12}(n)}{6^s}+frac{c_7(n)}{7^s}+frac{c_{16}(n)}{8^s}+dots ight)

If "s" ≡ 2 (mod 4),:delta_{2s}(n)=frac{pi^s n^{s-1{(s-1)!}left(frac{c_1(n)}{1^s}-frac{c_4(n)}{2^s}+ frac{c_3(n)}{3^s}- frac{c_8(n)}{4^s}+frac{c_5(n)}{5^s}-frac{c_{12}(n)}{6^s}+frac{c_7(n)}{7^s}-frac{c_{16}(n)}{8^s}+dots ight)

If "s" ≡ 1 (mod 4) and "s" > 1,:delta_{2s}(n)=frac{pi^s n^{s-1{(s-1)!}left(frac{c_1(n)}{1^s}+frac{c_4(n)}{2^s}-frac{c_3(n)}{3^s}+ frac{c_8(n)}{4^s}+frac{c_5(n)}{5^s}+frac{c_{12}(n)}{6^s}-frac{c_7(n)}{7^s}+frac{c_{16}(n)}{8^s}+dots ight)

If "s" ≡ 3 (mod 4),:delta_{2s}(n)=frac{pi^s n^{s-1{(s-1)!}left(frac{c_1(n)}{1^s}-frac{c_4(n)}{2^s}-frac{c_3(n)}{3^s}- frac{c_8(n)}{4^s}+frac{c_5(n)}{5^s}-frac{c_{12}(n)}{6^s}-frac{c_7(n)}{7^s}-frac{c_{16}(n)}{8^s}+dots ight)

and therefore,

:r_2(n)= pileft(frac{c_1(n)}{1}-frac{c_3(n)}{3}+frac{c_5(n)}{5}-frac{c_7(n)}{7}+frac{c_{11}(n)}{11}-frac{c_{13}(n)}{13}+frac{c_{15}(n)}{15}-frac{c_{17}(n)}{17}+dots ight)

:r_4 (n)=pi^2 nleft(frac{c_1(n)}{1}-frac{c_4(n)}{4}+frac{c_3(n)}{9}- frac{c_8(n)}{16}+frac{c_5(n)}{25}-frac{c_{12}(n)}{36}+frac{c_7(n)}{49}-frac{c_{16}(n)}{64}+dots ight)

:r_6(n)=frac{pi^3 n^2}{2}left(frac{c_1(n)}{1}-frac{c_4(n)}{8}-frac{c_3(n)}{27}- frac{c_8(n)}{64}+frac{c_5(n)}{125}-frac{c_{12}(n)}{216}-frac{c_7(n)}{343}-frac{c_{16}(n)}{512}+dots ight)

:r_8(n)=frac{pi^4 n^3}{6}left(frac{c_1(n)}{1}+frac{c_4(n)}{16}+ frac{c_3(n)}{81}+ frac{c_8(n)}{256}+frac{c_5(n)}{625}+frac{c_{12}(n)}{1296}+frac{c_7(n)}{2401}+frac{c_{16}(n)}{4096}+dots ight)

"r"′2"s"("n") (sums of triangles)

"r"′2"s"("n") is the number of ways "n" can be represented as the sum of 2"s" triangular numbers (i.e. the numbers 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, 15, ...; the "n"th triangular number is given by the formula "n"("n" + 1)/2.)

The analysis here is similar to that for squares. Ramanujan refers to the same paper as he did for the squares, where he showed that there is a function δ′2"s"("n") such that "r"′2"s"("n") = δ′2"s"("n") for "s" = 1, 2, 3, and 4, and that for "s" > 4, δ′2"s"("n") is a good approximation to "r"′2"s"("n").

Again, "s" = 1 requires a special formula:

:delta'_2(n)=frac{pi}{4}left(frac{c_1(4n+1)}{1}-frac{c_3(4n+1)}{3}+frac{c_5(4n+1)}{5}-frac{c_7(4n+1)}{7}+dots ight)

If "s" is a multiple of 4,:delta'_{2s}(n)=frac{(frac12pi)^s}{(s-1)!}left(n+frac{s}4 ight)^{s-1}left(frac{c_1(n+frac{s}4)}{1^s}+frac{c_3(n+frac{s}4)}{3^s}+frac{c_5(n+frac{s}4)}{5^s}+dots ight)

If "s" is twice an odd number,:delta'_{2s}(n)=frac{(frac12pi)^s}{(s-1)!}left(n+frac{s}4 ight)^{s-1}left(frac{c_1(2n+frac{s}2)}{1^s}+frac{c_3(2n+frac{s}2)}{3^s}+frac{c_5(2n+frac{s}2)}{5^s}+dots ight)

If "s" is an odd number and "s" > 1,:delta'_{2s}(n)=frac{(frac12pi)^s}{(s-1)!}left(n+frac{s}4 ight)^{s-1}left(frac{c_1(4n+s)}{1^s}-frac{c_3(4n+s)}{3^s}+frac{c_5(4n+s)}{5^s}-dots ight)

Therefore,

:r'_2(n)=frac{pi}{4}left(frac{c_1(4n+1)}{1}-frac{c_3(4n+1)}{3}+frac{c_5(4n+1)}{5}-frac{c_7(4n+1)}{7}+dots ight)

:r'_4(n)=left( frac12pi ight)^2left(n+ frac12 ight)left(frac{c_1(2n+1)}{1}+frac{c_3(2n+1)}{9}+frac{c_5(2n+1)}{25}+dots ight)

:r'_6(n)=frac{(frac12pi)^3}{2}left(n+ frac34 ight)^2left(frac{c_1(4n+3)}{1}-frac{c_3(4n+3)}{27}+frac{c_5(4n+3)}{125}-dots ight)

:r'_8(n)=frac{(frac12pi)^4}{6}(n+1)^3left(frac{c_1(n+1)}{1}+frac{c_3(n+1)}{81}+frac{c_5(n+1)}{625}+dots ight)

ums

Let

:T_q(n) = c_q(1) + c_q(2)+dots+c_q(n)

and

:U_q(n) = T_q(n) + frac12phi(q).

Then if "s" > 1,:sigma_{-s}(1)+sigma_{-s}(2)+dots+sigma_{-s}(n)

::=zeta(s+1)left(n+frac{T_2(n)}{2^{s+1+frac{T_3(n)}{3^{s+1+frac{T_4(n)}{4^{s+1+dots ight)

::=zeta(s+1)left(n+ frac12+frac{U_2(n)}{2^{s+1+frac{U_3(n)}{3^{s+1+frac{U_4(n)}{4^{s+1+dots ight)- frac12zeta(s),

:d(1)+d(2)+dots+d(n)

::=-frac{T_2(n)log2}{2}-frac{T_3(n)log3}{3}-frac{T_4(n)log4}{4}-dots,

:d(1)log1+d(2)log2+dots+d(n)log n

::=-frac{T_2(n)(2gammalog2-log^22)}{2}-frac{T_3(n)(2gammalog3-log^23)}{3}-frac{T_4(n)(2gammalog4-log^24)}{4}-dots,

:r_2(1)+r_2(2)+dots+r_2(n)

::=pileft(n-frac{T_3(n)}{3}+frac{T_5(n)}{5}-frac{T_7(n)}{7}+dots ight).

ee also

*Gaussian period
*Kloosterman sum

Notes

References

*citation
last1 = Hardy | first1 = G. H.
title = Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work
publisher = AMS / Chelsea
location = Providence RI
date = 1999
isbn = 978-0821820230

*citation
last1 = Hardy | first1 = G. H.
last2 = Wright | first2 = E. M.
title = An Introduction to the Theory of Numbers (Fifth edition)
publisher = Oxford University Press
location = Oxford
date = 1980
isbn = 978-0198531715

*citation
last1 = Knopfmacher | first1 = John
title = Abstract Analytic Number Theory
publisher = Dover
location = New York
date = 1990
isbn = 0-486-66344-2

* Section A.7.

*citation
last1 = Ramanujan | first1 = Srinivasa
title = Collected Papers
publisher = AMS / Chelsea
location = Providence RI
date = 2000
isbn = 978-0821820766


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Ramanujan summation — is a technique invented by the mathematician Srinivasa Ramanujan for assigning a sum to infinite divergent series. Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties which make it… …   Wikipedia

  • Ramanujan — Srinivasa Ramanujan Srinivasa Ramanujan Srinivâsa Aiyangâr Râmânujan, en tamoul : ஸ்ரீனிவாஸ ஐயங்கார் ராமானுஜன், (22 décembre 1887 – 26 avril 1920) est un mathématicien indien. Ramanujan travailla principalement en théorie analytique des… …   Wikipédia en Français

  • Ramanujan , Srinivasa Iyengar — (1887–1920) Indian mathematician Ramanujan, the son of a clerk, was born into a poor Brahmin family in Erode near Madras, India. Sometime in 1903, while a student at Kumbakonam High School, he acquired a copy of G.S. Carr s Synopsis of Elementary …   Scientists

  • Srinivasa Ramanujan — Infobox Scientist name=Srinivasa Ramanujan thumb|Srinivasa Ramanujan birth date = birth date|1887|12|22|df=y birth place = Erode, Tamil Nadu, India death date = death date and age|1920|4|26|1887|12|22|df=y death place = Chetput, (Madras), Tamil… …   Wikipedia

  • List of topics named after Srinivasa Ramanujan — Srinivasa Ramanujan (1887 1920) is the eponym of all of the topics listed below.*Dougall Ramanujan identity *Hardy Ramanujan number *Landau Ramanujan constant *Ramanujan s congruences *Ramanujan Nagell equation *Ramanujan Peterssen conjecture… …   Wikipedia

  • Srinivasa Ramanujan —  Ne doit pas confondu avec cet autre mathématicien : C. P. Ramanujam (en). Srinivasa Ramanujan …   Wikipédia en Français

  • Srinivasa Aaiyangar Ramanujan — Saltar a navegación, búsqueda Srinivasa Ramanujan Srinivasa Aaiyangar Ramanujan Nacimiento …   Wikipedia Español

  • Srinivasa Aiyangar Ramanujan — Srinivasa Ramanujan Srinivasa Aiyangar Ramanujan Nacimiento 22 de diciembre de 1887 Erode, Tamil Nadu, Raj Británico …   Wikipedia Español

  • Srinavasa Ramanujan — Srinivasa Ramanujan Srinivasa Ramanujan Srinivâsa Aiyangâr Râmânujan, en tamoul : ஸ்ரீனிவாஸ ஐயங்கார் ராமானுஜன், (22 décembre 1887 – 26 avril 1920) est un mathématicien indien. Ramanujan travailla principalement en théorie analytique des… …   Wikipédia en Français

  • Srinivasa Aaiyangar Ramanujan — Srinivasa Ramanujan Srinivasa Ramanujan Srinivâsa Aiyangâr Râmânujan, en tamoul : ஸ்ரீனிவாஸ ஐயங்கார் ராமானுஜன், (22 décembre 1887 – 26 avril 1920) est un mathématicien indien. Ramanujan travailla principalement en théorie analytique des… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”