Cartan-Kuranishi prolongation theorem
- Cartan-Kuranishi prolongation theorem
Given an exterior differential system defined on a manifold "M", the Cartan-Kuranishi prolongation theorem says that after a finite number of "prolongations" the system is either "in involution" (admits at least one 'large' integral manifold), or is impossible.
References
* M. Kuranishi, "On É. Cartan's prolongation theorem of exterior differential systems", Amer. J. Math., vol. 79, 1957, p. 1-47
Wikimedia Foundation.
2010.
Look at other dictionaries:
Masatake Kuranishi — (jap. 倉西 正武, Kuranishi Masatake; * 19. Juli 1924 in Tokio, Präfektur Tokio) ist ein japanischer Mathematiker, der sich mit komplexer Analysis, partiellen Differentialgleichungen und Differentialgeometrie beschäftigt. Inhaltsverzeichnis 1 Leben 2… … Deutsch Wikipedia
List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… … Wikipedia
Integrability conditions for differential systems — In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of… … Wikipedia