Cartan-Kuranishi prolongation theorem

Cartan-Kuranishi prolongation theorem

Given an exterior differential system defined on a manifold "M", the Cartan-Kuranishi prolongation theorem says that after a finite number of "prolongations" the system is either "in involution" (admits at least one 'large' integral manifold), or is impossible.

References

* M. Kuranishi, "On É. Cartan's prolongation theorem of exterior differential systems", Amer. J. Math., vol. 79, 1957, p. 1-47


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Masatake Kuranishi — (jap. 倉西 正武, Kuranishi Masatake; * 19. Juli 1924 in Tokio, Präfektur Tokio) ist ein japanischer Mathematiker, der sich mit komplexer Analysis, partiellen Differentialgleichungen und Differentialgeometrie beschäftigt. Inhaltsverzeichnis 1 Leben 2… …   Deutsch Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Integrability conditions for differential systems — In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”