Class automorphism

Class automorphism

In mathematics, in the realm of group theory, a class automorphism is an automorphism of a group that sends each element to within its conjugacy class. The class automorphisms form a subgroup of the automorphism group. Some facts:

  • Every inner automorphism is a class automorphism.
  • Every class automorphism is a family automorphism and a quotientable automorphism.
  • Under a quotient map, class automorphisms go to class automorphisms.
  • Every class automorphism is an IA automorphism, that is, it acts as identity on the Abelianization.
  • Every class automorphism is a center-fixing automorphism, that is, it fixes all points in the center.
  • Normal subgroups are characterized as subgroups invariant under class automorphisms.

For infinite groups, an example of a class automorphism that is not inner is the following: take the finitary symmetric group on countably many elements and consider conjugation by an infinitary permutation. This conjugation defines an outer automorphism on the group of finitary permutations. However, for any specific finitary permutation, we can find a finitary permutation whose conjugation has the same effect as this infinitary permutation. This is essentially because the infinitary permutation takes permutations of finite supports to permutations of finite support.

For finite groups, the classical example is a group of order 32 obtained as the semidirect product of the cyclic ring on 8 elements, by its group of units acting via multiplication. Finding a class automorphism in the stability group that is not inner boils down to finding a cocycle for the action that is locally a coboundary but is not a global coboundary.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Automorphism — In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms… …   Wikipedia

  • Family automorphism — In mathematics, in the realm of group theory, an automorphism of a group is termed a family automorphism if it takes every element to an element generating a conjugate subgroup. In symbols, an automorphism sigma of a group G is a family… …   Wikipedia

  • Quotientable automorphism — In mathematics, in the realm of group theory, a quotientable automorphism of a group is an automorphism that takes every normal subgroup to within itself. As a result, it gives a corresponding automorphism for every quotient group.All family… …   Wikipedia

  • Inner automorphism — In abstract algebra an inner automorphism is a function which, informally, involves a certain operation being applied, then another one (x) performed, and then the initial operation being reversed. Sometimes this has a net effect ( take off shoes …   Wikipedia

  • Outer automorphism group — In mathematics, the outer automorphism group of a group G is the quotient Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually …   Wikipedia

  • Mapping class group — In mathematics, in the sub field of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a discrete group of symmetries of the space. Contents 1 Motivation 2… …   Wikipedia

  • Graph automorphism — In graph theoretical mathematics, an automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the edge vertex connectivity.Formally, an automorphism of a graph G = ( V , E ) is a permutation sigma;… …   Wikipedia

  • Conjugacy class — In mathematics, especially group theory, the elements of any group may be partitioned into conjugacy classes; members of the same conjugacy class share many properties, and study of conjugacy classes of non abelian groups reveals many important… …   Wikipedia

  • Fujiki class C — In algebraic geometry, a complex manifold is called Fujiki class C if it is bimeromorphic to a compact Kähler manifold. This notion was defined by Akira Fujiki. [A. Fujiki, On Automorphism Groups of Compact Kähler Manifolds, Inv. Math. 44 (1978)… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”