Super Virasoro algebra

Super Virasoro algebra

In mathematical physics, a super Virasoro algebra is an extension of the Virasoro algebra to a Lie superalgebra. There are two extensions with particular importance in superstring theory: the Ramond algebra (named after Pierre Ramond) and the Neveu–Schwarz algebra (named after Andre Neveu and John Henry Schwarz). Both algebras have N=1 supersymmetry and an even part given by the Virasoro algebra. They describe the symmetries of a superstring in two different sectors, called the Ramond sector and the Neveu–Schwarz sector.

Contents

The N = 1 super Virasoro algebras

There are two minimal extensions of the Virasoro algebra with N = 1 supersymmetry: the Ramond algebra and the Neveu–Schwarz algebra. They are both Lie superalgebras whose even part is the Virasoro algebra: this Lie algebra has a basis consisting of a central element C and generators Lm (for integer m) satisfying

[Lm,Ln] = (mn)Lm+n + m(m2 − 1)δm+n C/12,

where δi is zero unless i = 0, in which case it is 1.

The odd part of the algebra has basis Gr, where r is either an integer (the Ramond case), or half an odd integer (the Neveu–Schwarz case). In both cases, C is central in the superalgebra, and the additional graded brackets are given by

[Lm,Gr] = (m/2 − r)Gm+r,
{Gr,Gs} = 2Lr+s + (r2 − 1/4)δr+s C/3.

Note that this last bracket is an anticommutator, not a commutator, because both generators are odd.

The unitary highest weight representations of these algebras have a classification analogous to that for the Virasoro algebra, with a continuum of representations together with an infinite discrete series. The existence of these discrete series was conjectured by Daniel Friedan, Zongan Qiu, and Stephen Shenker (1984). It was proven by Peter Goddard, Adrian Kent and David Olive (1986), using a supersymmetric generalisation of the coset construction or GKO construction.

Application to superstring theory

In superstring theory, the fermionic fields on the closed string may be either periodic or anti-periodic on the circle around the string. States in the "Ramond sector" admit one option, described by the Ramond algebra, while those in the "Neveu–Schwarz sector" admit the other, described by the Neveu–Schwarz algebra.

For a fermionic field, the periodicity depends on the choice of coordinates on the worldsheet. In the w-frame, in which the worldsheet of a single string state is described as a long cylinder, states in the Neveu–Schwarz sector are anti-periodic and states in the Ramond sector are periodic. In the z-frame, in which the worldsheet of a single string state is described as an infinite punctured plane, the opposite is true.

The Neveu–Schwarz sector and Ramond sector are also defined in the open string and depend on the boundary conditions of the fermionic field at the edges of the open string.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Virasoro algebra — In mathematics, the Virasoro algebra (named after the physicist Miguel Angel Virasoro) is a complex Lie algebra, given as a central extension of the complex polynomial vector fields on the circle, and is widely used in string theory.DefinitionThe …   Wikipedia

  • Álgebra de Virasoro — El álgebra de Virasoro es una forma de álgebra de Lie compleja, dada como extensión central del campo vectorial de los polinomios complejos sobre la circunferencia unitaria; esta álgebra toma su nombre del físico argentino Miguel Ángel Virasoro.… …   Wikipedia Español

  • N = 2 superconformal algebra — In mathematical physics, the N = 2 superconformal algebra is an infinite dimensional Lie superalgebra, related to supersymmetry, that occurs in string theory and conformal field theory. It has important applications in mirror symmetry.… …   Wikipedia

  • Superconformal algebra — In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. It generates the superconformal group in some cases (In two Euclidean dimensions, the Lie… …   Wikipedia

  • Super álgebra de Lie — En matemática, una super álgebra de Lie es la generalización de un álgebra de Lie. Las super álgebras de Lie son importantes en física teórica en donde se utilizan para describir la matemática de la supersimetría. En estas teorías, los elementos… …   Wikipedia Español

  • Álgebra de Lie — En matemática, un álgebra de Lie es la estructura algebraica que describe un conjunto de transformaciones infinitesimales. Su uso principal reside en el estudio de objetos geométricos tales como grupos de Lie y variedades diferenciables. El… …   Wikipedia Español

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Conformal field theory — A conformal field theory (CFT) is a quantum field theory (or statistical mechanics model at the critical point) that is invariant under conformal transformations. Conformal field theory is often studied in two dimensions where there is an… …   Wikipedia

  • Coset construction — In mathematics, the coset construction (or GKO construction) is a method of constructing unitary highest weight representations of the Virasoro algebra, introduced by Peter Goddard, Adrian Kent and David Olive (1986). The construction produces… …   Wikipedia

  • Bunji Sakita — (jap. 崎田 文二, Sakita Bunji; * 1930 in der Präfektur Toyama, Japan; † 31. August 2002 in Japan) war ein japanisch US amerikanischer theoretischer Physiker. Sakita studierte an der Universität Kanazawa (Vordiplom 1953) und dann bei Shōichi Sakata an …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”