Bifurcation theory — is the mathematical study of changes in the qualitative or topological structure of a given family. Examples of such families are the integral curves of a family of vector fields or, the solutions of a family of differential equations. Most… … Wikipedia
Heteroclinic cycle — In mathematics, a heteroclinic cycle is an invariant set in the phase space of a dynamical system. It is a topological circle of equilibrium points and connecting heteroclinic orbits. If a heteroclinic cycle is asymptotically stable, approaching… … Wikipedia
Heteroclinic orbit — In mathematics, in the phase portrait of a dynamical system, a heteroclinic orbit (sometimes called a heteroclinic connection) is a path in phase space which joins two different equilibrium points. If the equilibrium points at the start and end… … Wikipedia
Infinite-period bifurcation — In mathematics, an infinite period bifurcation is a global bifurcation that can occur when two fixed points emerge on a limit cycle. As the limit of a parameter approaches a certain critical value, the speed of the oscillation slows down and the… … Wikipedia
List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… … Wikipedia
Numerical continuation — is a method of computing approximate solutions of a system of parameterized nonlinear equations, The parameter λ is usually a real scalar, and the solution an n vector. For a fixed parameter value λ,, maps Euclidean n space into itself. Often the … Wikipedia
Homoclinic orbit — In mathematics, a homoclinic orbit is a trajectory of a flow of a dynamical system which joins a saddle equilibrium point to itself. More precisely, a homoclinic orbit lies in the intersection of the stable manifold and the unstable manifold of… … Wikipedia