Paracompact space — In mathematics, a paracompact space is a topological space in which every open cover admits a locally finite open refinement. Paracompact spaces are sometimes also required to be Hausdorff. Paracompact spaces were introduced by Dieudonné (1944).… … Wikipedia
space — 1. noun /speɪs/ a) The intervening contents of a volume. If it be only a Single Letter or two that drops, he thruſts the end of his Bodkin between every Letter of that Word, till he comes to a Space: and then perhaps by forcing thoſe Letters… … Wiktionary
Shrinking space — In mathematics, in the field of topology, a topological space is said to be a shrinking space if every open cover admits a shrinking. A shrinking of an open cover is another open cover indexed by the same indexing set, with the property that the… … Wikipedia
Metacompact space — In mathematics, in the field of general topology, a topological space is said to be metacompact if every open cover has a point finite open refinement. That is, given any open cover of the topological space, there is a refinement which is again… … Wikipedia
Thom space — In mathematics, the Thom space or Thom complex (named after René Thom) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space. One way to construct this space is as follows … Wikipedia
Completely uniformizable space — In mathematics, a topological space (X, T) is called completely uniformizable (or Dieudonné complete or topologically complete) if there exists at least one complete uniformity that induces the topology T. Some authors additionally require X to… … Wikipedia
Compact space — Compactness redirects here. For the concept in first order logic, see compactness theorem. In mathematics, specifically general topology and metric topology, a compact space is an abstract mathematical space whose topology has the compactness… … Wikipedia
Classifying space for U(n) — In mathematics, the classifying space for the unitary group U(n) is a space B(U(n)) together with a universal bundle E(U(n)) such that any hermitian bundle on a paracompact space X is the pull back of E by a map X → B unique up to homotopy. This… … Wikipedia
Orthocompact space — In mathematics, in the field of general topology, a topological space is said to be orthocompact if every open cover has an interior preserving open refinement. That is, given an open cover of the topological space, there is a refinement which is … Wikipedia
Collectionwise normal space — In mathematics, a topological space X is called collectionwise normal if for every discrete family Fi (i ∈ I) of closed subsets of X there exists a pairwise disjoint family of open sets Ui (i ∈ I), such that Fi ⊂ Ui. A family of subsets of… … Wikipedia