Intrinsic viscosity

Intrinsic viscosity

Intrinsic viscosity left [ eta ight] is a measure of a solute's contribution to the viscosity eta of a solution. It is defined as

:left [ eta ight] = lim_{varphi ightarrow 0} frac{eta - eta_{0{eta_{0}varphi}

where eta_0 is the viscosity in the absence of the solute and φ is the volume fraction of the solute in the solution. As defined here, the intrinsic viscosity left [ eta ight] is a dimensionless number. When the solute particles are rigid spheres, the intrinsic viscosity equals 2.5, as shown first by Albert Einstein.

In practical settings, φ is usually solute mass concentration, and the units of intrinsic viscosity left [ eta ight] are inverse concentration (deciliters per gram).

Formulae for rigid spheroids

Generalizing from spheres to spheroids with an axial semiaxis a (i.e., the semiaxis of revolution) and equatorial semiaxes b, the intrinsic viscosity can be written

:left [ eta ight] = left( frac{4}{15} ight) (J + K - L) + left( frac{2}{3} ight) L + left( frac{1}{3} ight) M + left( frac{1}{15} ight) R N

where the constants are defined

:M stackrel{mathrm{def{=} frac{1}{a b^{4 frac{1}{J_{alpha}^{prime

:K stackrel{mathrm{def{=} frac{M}{2}

:J stackrel{mathrm{def{=} K frac{J_{alpha}^{primeprime{J_{eta}^{primeprime

:L stackrel{mathrm{def{=} frac{2}{a b^{2} left( a^{2} + b^{2} ight)}frac{1}{J_{eta}^{prime

:N stackrel{mathrm{def{=} frac{6}{a b^{2frac{left( a^{2} - b^{2} ight)}{a^{2} J_{alpha} + b^{2} J_{eta

The J coefficients are the Jeffery functions

:J_{alpha} = int_{0}^{infty} dx frac{dx}{left( x + b^{2} ight) sqrt{left( x + a^{2} ight)^{3}

:J_{eta} = int_{0}^{infty} dx frac{dx}{left( x + b^{2} ight)^{2} sqrt{left( x + a^{2} ight)

:J_{alpha}^{prime} = int_{0}^{infty} dx frac{dx}{left( x + b^{2} ight)^{3} sqrt{left( x + a^{2} ight)

:J_{eta}^{prime} = int_{0}^{infty} dx frac{dx}{left( x + b^{2} ight)^{2} sqrt{left( x + a^{2} ight)^{3}

:J_{alpha}^{primeprime} = int_{0}^{infty} dx frac{x dx}{left( x + b^{2} ight)^{3} sqrt{left( x + a^{2} ight)

:J_{eta}^{primeprime} = int_{0}^{infty} dx frac{x dx}{left( x + b^{2} ight)^{2} sqrt{left( x + a^{2} ight)^{3}

General ellipsoidal formulae

It is possible to generalize the intrinsic viscosity formula from spheroids to arbitrary ellipsoids with semiaxes a, b and c.

Frequency dependence

The intrinsic viscosity formula may also be generalized to include a frequency dependence.

Applications

The intrinsic viscosity is very sensitive to the axial ratio of spheroids, especially of prolate spheroids. For example, the intrinsic viscosity can provide rough estimates of the number of subunits in a protein fiber composed of a helical array of proteins such as tubulin. More generally, intrinsic viscosity can be used to assay quaternary structure. In polymer chemistry intrinsic viscosity is related to molar mass through the Mark-Houwink equation.A practical method for the determination of intrinsic viscosity is with a Ubbelohde viscometer.

References

* Jeffery GB. (1922) "The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid", "Proc. Roy. Soc.", A102, 161-179.

* Simha R. (1940) "The Influence of Brownian Movement on the Viscosity of Solutions", "J. Phys. Chem.", 44, 25-34.

* Mehl JW, Oncley JL, Simha R. (1940) "Viscosity and the Shape of Protein Molecules", "Science", 92, 132-133.

* Saito N. (1951) "J. Phys. Soc. Japan", 6, 297.

* Scheraga HA. (1955) "Non-Newtonian Viscosity of Solutions of Ellipsoidal Particles", "J. Chem. Phys.", 23, 1526-1531.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • intrinsic viscosity — ribinis klampos skaičius statusas T sritis Standartizacija ir metrologija apibrėžtis Polimero tirpalo klampos skaičius, ekstrapoliuotas į begalinį praskiedimą. atitikmenys: angl. intrinsic viscosity; limiting viscosity number vok.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • intrinsic viscosity — ribinis klampos skaičius statusas T sritis chemija apibrėžtis Polimero tirpalo klampos skaičius, ekstrapoliuotas į begalinį praskiedimą. atitikmenys: angl. intrinsic viscosity; limiting viscosity number rus. предельное число вязкости;… …   Chemijos terminų aiškinamasis žodynas

  • intrinsic viscosity — ribinis klampos skaičius statusas T sritis fizika atitikmenys: angl. intrinsic viscosity; limiting viscosity number vok. Grenzviskositätszahl, f rus. предельное число вязкости, n; характеристическая вязкость, f pranc. nombre limite de viscosité,… …   Fizikos terminų žodynas

  • Intrinsic viscosity — Характеристическая вязкость …   Краткий толковый словарь по полиграфии

  • limiting viscosity number — ribinis klampos skaičius statusas T sritis Standartizacija ir metrologija apibrėžtis Polimero tirpalo klampos skaičius, ekstrapoliuotas į begalinį praskiedimą. atitikmenys: angl. intrinsic viscosity; limiting viscosity number vok.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • limiting viscosity number — ribinis klampos skaičius statusas T sritis chemija apibrėžtis Polimero tirpalo klampos skaičius, ekstrapoliuotas į begalinį praskiedimą. atitikmenys: angl. intrinsic viscosity; limiting viscosity number rus. предельное число вязкости;… …   Chemijos terminų aiškinamasis žodynas

  • limiting viscosity number — ribinis klampos skaičius statusas T sritis fizika atitikmenys: angl. intrinsic viscosity; limiting viscosity number vok. Grenzviskositätszahl, f rus. предельное число вязкости, n; характеристическая вязкость, f pranc. nombre limite de viscosité,… …   Fizikos terminų žodynas

  • Polyethylene terephthalate — PETE redirects here. For the first name, see Peter (disambiguation). For other uses, see Pete (disambiguation). Polyethylene terephthalate fibre IUPAC name …   Wikipedia

  • Mark-Houwink equation — The Mark Houwink equation gives a relation between intrinsic viscosity [eta] and molecular weight M: [Paul, Hiemenz C., and Lodge P. Timothy. Polymer Chemistry. Second ed. Boca Raton: CRC P, 2007. 336, 338 339.] : [eta] =KM^aFrom this equation… …   Wikipedia

  • Mark–Houwink equation — The Mark–Houwink equation gives a relation between intrinsic viscosity [η] and molecular weight M:[1] [η] = KMa From this equation the molecular weight of a polymer can be determined from data on the intrinsic viscosity and vice versa. The values …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”