Unknotting problem

Unknotting problem

In mathematics, the unknotting problem is the problem of algorithmically recognizing the unknot, given some input, e.g., a knot diagram.

There are several types of unknotting algorithms. A major open problem is to determine if there is such a polynomial time algorithm. The unknotting problem is known to be in NP, and also in AM cap coAM. Ian Agol has claimed a proof that unknotting is in NP cap co-NP.

Some algorithms:
* Haken's algorithm - uses the theory of normal surfaces to check for a normal disc bound by the knot
* An upper bound (exponential in crossing number) exists on the number of Reidemeister moves needed to change an unknot diagram to the standard unknot. This gives a brute-force search algorithm.
* Birman-Hirsch algorithm - uses braid foliations
* Residual finiteness of the knot group (which follows from geometrization of Haken manifolds) gives a rather inefficient algorithm: check if the group has a representation into a symmetric group with non-cyclic image while simultaneously attempting to produce a subdivision of the triangulated complement that is equivalent to a subdivision of the triangulated solid torus.
* Knot Floer homology of the knot detects the genus of the knot, which is 0 if and only if the knot is an unknot. A combinatorial version of knot Floer homology allows a straightforward computation.

Understanding the complexity of these algorithms is an active field of study.

ee also

* Algorithmic topology
* Rubinstein–Thompson algorithm for recognizing the 3-sphere

References

* Masao Hara, Seiichi Tani and Makoto Yamamoto. "Unknotting is in mathbf{AM} cap mathbf{coAM}" Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005
* Ian Agol. "Knot genus is NP." [http://www.math.uic.edu/~agol/coNP/coNP1.html Web page with scanned talk slides]
* Wolfgang Haken, "Theorie der Normalflächen." Acta Math. 105 (1961) 245–375 (Haken's algorithm)
* Joan S. Birman; Michael Hirsch, [http://dx.doi.org/10.2140/gt.1998.2.175 "A new algorithm for recognizing the unknot."] Geometry and Topology 2 (1998), 178&ndasah;220.
* Joel Hass; Jeffrey Lagarias, "The number of Reidemeister moves needed for unknotting." J. Amer. Math. Soc. 14 (2001), no. 2, 399–428


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Knot theory — A three dimensional depiction of a thickened trefoil knot, the simplest non trivial knot …   Wikipedia

  • Reidemeister move — In the mathematical area of knot theory, a Reidemeister move refers to one of three local moves on a link diagram. In 1927, J.W. Alexander and G.B. Briggs, and independently Kurt Reidemeister, demonstrated that two knot diagrams belonging to the… …   Wikipedia

  • Открытые математические проблемы — Открытые (нерешённые) математические проблемы  проблемы, которые рассматривались математиками, но до сих пор не решены. Часто имеют форму гипотез, которые предположительно верны, но нуждаются в доказательстве. В научном мире популярна… …   Википедия

  • List of knot theory topics — Knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician s knot differs in that the ends are joined together so that it cannot be undone. In precise mathematical… …   Wikipedia

  • List of mathematics articles (U) — NOTOC U U duality U quadratic distribution U statistic UCT Mathematics Competition Ugly duckling theorem Ulam numbers Ulam spiral Ultraconnected space Ultrafilter Ultrafinitism Ultrahyperbolic wave equation Ultralimit Ultrametric space… …   Wikipedia

  • Unknot — The unknot arises in the mathematical theory of knots. Intuitively, the unknot is a closed loop of rope without a knot in it. A knot theorist would describe the unknot as an image of any embedding that can be deformed, i.e. ambient isotoped, to… …   Wikipedia

  • Wolfgang Haken — (born June 21, 1928) is a mathematician who specializes in topology, in particular 3 manifolds. In 1976 together with colleague Kenneth Appel at the University of Illinois at Urbana Champaign, Haken solved one of the most famous problems in… …   Wikipedia

  • Nœud trivial — Le nœud trivial Deux diagrammes simples du nœud trivial …   Wikipédia en Français

  • Topoisomerase — Topoisomerases (type I: EC 5.99.1.2, type II: EC 5.99.1.3) are enzymes that regulate the overwinding or underwinding of DNA. The winding problem of DNA arises due to the intertwined nature of its double helical structure. For example, during DNA… …   Wikipedia

  • Движение Рейдемейстера — В математической теории узлов, движением (преобразованием) Рейдемейстера называют одно из трёх локальных движений на диаграмме зацепления. В 1927 Джеймс Александер и Бриггс, а также независимо от них Курт Рейдемейстер, показали, что две диаграммы …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”