Structure factor

Structure factor

In physics, in the area of crystallography, the structure factor of a crystal is a mathematical description of how the crystal scatters incident radiation. The structure factor is a particularly useful tool in the interpretation of interference patterns obtained in X-ray, electron and neutron diffraction experiments.

cattering from a crystal

A crystal is a periodic arrangement of atoms in a particular pattern. Each of the atoms may scatter incident radiation such as X-rays, electrons and neutrons. Because of the periodic arrangement of the atoms, the interference of waves scattered from different atoms may cause a distinct pattern of constructive and destructive interference to form. This is the diffraction pattern caused by the crystal.

In the kinematical approximation for diffraction, the intensity of a diffracted beam is given by:

: I_{Deltamathbf{k = left | psi_{Deltamathbf{k ight |^2 propto left | F_{Deltamathbf{k ight |^2

where psi_{Deltamathbf{k is the wavefunction of a beam scattered a vector Deltamathbf{k}, and F_{Deltamathbf{k is the so called structure factor which is given by:

: F_{Deltamathbf{k=sum_{j} f_j e^{-iDeltamathbf{k} cdot mathbf{r}_j}

Here, mathbf{r}_j is the position of an atom j in the unit cell, and f_j is the scattering power of the atom, also called the atomic form factor. The sum is over all atoms in the unit cell. It can be shown that in the ideal case, diffraction only occurs if the scattering vector Deltamathbf{k} is equal to a reciprocal lattice vector mathbf{K}.

The structure factor describes the way in which an incident beam is scattered by the atoms of a crystal unit cell, taking into account the different scattering power of the elements through the term f_i. Since the atoms are spatially distributed in the unit cell, there will be a difference in phase when considering the scattered amplitude from two atoms. This phase shift is taken into account by the complex exponential term. The atomic form factor, or scattering power, of an element depends on the type of radiation considered. Because electrons interact with matter though different processes than for example X-rays, the atomic form factors for the two cases are not the same.

tructure factors for specific lattice types

To compute structure factors for a specific lattice, compute the sum above over the atoms in the unit cell. Since crystals are often described in terms of their Miller indices, it is useful to examine a specific structure factor in terms of these.

Body-centered cubic (BCC)

As a convention, the body-centered cubic system is described in terms of a simple cubic lattice with primitive vectors ahat{x}, ahat{y}, ahat{z}, with a basis consisting of mathbf{r}_0 = vec{0} and mathbf{r}_1 = (a/2)(hat{x} + hat{y} + hat{z}). The corresponding reciprocal lattice is also simple cubic with side 2pi/a.

In a monoatomic crystal, all the form factors f are the same. The intensity of a diffracted beam scattered with a vector mathbf{K}=(2pi/a)(hhat{x}^* + khat{y}^* + lhat{z}^*) by a crystal plane with Miller indices (hkl) is then given by:

:egin{matrix}F_{mathbf{K & = & f left [ e^{-imathbf{K}cdotvec{0 + e^{-imathbf{K}cdot(a/2)(hat{x} + hat{y} + hat{z})} ight] \& = & f left [ 1 + e^{-imathbf{K}cdot(a/2)(hat{x} + hat{y} + hat{z})} ight] \& = & f left [ 1 + e^{-ipi(h + k + l)} ight] \& = & f left [ 1 + (-1)^{h + k + l} ight] \end{matrix}

We then arrive at the following result for the structure factor for scattering from a plane (hkl):

F_{hkl} = egin{cases} 2f, & h + k + l mbox{even}\ 0, & h + k + l mbox{odd} end{cases}

This result tells us that for a reflection to appear in a diffraction experiment involving a body-centered crystal, the sum of the Miller indices of the scattering plane must be even. If the sum of the Miller indices is odd, the intensity of the diffracted beam is reduced to zero due to destructive interference. This zero intensity for a group of diffracted beams is called a systematic absence. Since atomic form factors fall off with increasing diffraction angle corresponding to higher Miller indices, the most intense diffraction peak from a material with a BCC structure is typically the (110). The (110) plane is the most densely packed of BCC crystal structures and is therefore the lowest energy surface for a thin film to expose. Films of BCC materials like iron and tungsten therefore grow in a characteristic (110) orientation.

Face-centered cubic (FCC)

In the case of a monoatomic FCC crystal, the atoms in the basis are at the origin mathbf{r}_0 = vec{0} with indices (0,0,0) and at the three face centers mathbf{r}_1 = (a/2)(hat{x} + hat{y}), mathbf{r}_2 = (a/2)(hat{y} + hat{z}), mathbf{r}_3 = (a/2)(hat{x} + hat{z}) with indices given by (1/2,1/2,0), (0,1/2,1/2), (1/2,0,1/2). An argument similar to the one above gives the expression

:egin{matrix}F_{mathbf{K & = & f left [ e^{-imathbf{K}cdotvec{0 + e^{-imathbf{K}cdot(a/2)(hat{x} + hat{y})} + e^{-imathbf{K}cdot(a/2)(hat{y} + hat{z})} + e^{-imathbf{K}cdot(a/2)(hat{x} + hat{z})} ight] \& = & f left [ 1 + (-1)^{h + k} + (-1)^{k + l} + (-1)^{h + l} ight] \end{matrix}

with the result

F_{hkl} = egin{cases} 4f, & h,k,l mbox{all even or all odd}\ 0, & h,k,l mbox{mixed parity} end{cases}

The most intense diffraction peak from a material that crystallizes in the FCC structure is typically the (111). Films of FCC materials like silicon tend to grow in a (111) orientation with a triangular surface symmetry although the surfaces of wafers on which integrated circuits are grown instead have the (100) orientation with a square surface symmetry.

Diamond Crystal Structure

The Diamond cubic crystal structure is possessed by diamond (carbon), most semiconductors and tin. The basis cell contains 8 atoms located at cell positions:

mathbf{r}_0 = vec{0}

mathbf{r}_1 = (a/4)(hat{x} + hat{y} + hat{z})

mathbf{r}_2 = (a/4)(2hat{x} + 2hat{y})

mathbf{r}_3 = (a/4)(3hat{x} + 3hat{y} + hat{z})

mathbf{r}_4 = (a/4)(2hat{x} + 2hat{z})

mathbf{r}_5 = (a/4)(2hat{y} + 2hat{z})

mathbf{r}_6 = (a/4)(3hat{x} + hat{y} + 3hat{z})

mathbf{r}_7 = (a/4)(hat{x} + 3hat{y} + 3hat{z})

The Structure factor then takes on a form like this:

:egin{matrix}F_{mathbf{K & = & f left [ egin{matrix}e^{-imathbf{K}cdotvec{0 + e^{-imathbf{K}cdot(a/2)(hat{x} + hat{y})} + e^{-imathbf{K}cdot(a/2)(hat{y} + hat{z})} + e^{-imathbf{K}cdot(a/2)(hat{x} + hat{z})} + \e^{-imathbf{K}cdot(a/4)(hat{x} + hat{y} + hat{z})} + e^{-imathbf{K}cdot(a/4)(3hat{x} + hat{y} + 3hat{z})} + e^{-imathbf{K}cdot(a/4)(3hat{x} + 3hat{y} + hat{z})} + e^{-imathbf{K}cdot(a/4)(hat{x} + 3hat{y} + 3hat{z})}end{matrix} ight] \& = & f left [ egin{matrix}1 + (-1)^{h + k} + (-1)^{k + l} + (-1)^{h + l} + \(-i)^{h + k + l} + (-i)^{3h + k + 3l} + (-i)^{3h + 3k + l} + (-i)^{h + 3k + 3l}end{matrix} ight] \& = & f left [ 1 + (-1)^{h + k} + (-1)^{k + l} + (-1)^{h + l} ight] cdot left [ 1 + (-i)^{h + k + l} ight] \end{matrix}

with the result

* for mixed values (odds and even values combined) of h, k, and l, F2 will be 0
* if the values are unmixed and...
**h,k,l is odd then F=4f(1+i), FF*=32f2
**h,k,l is an even(satisfy h+k+l=4n) then "F" = 8"f"
**h,k,l is an even(unsatisfy h+k+l=4n) then "F" = 0

ee also

*R-factor (crystallography)
*Patterson function

External links

* [ Structure Factor Tutorial] located at the University of York.

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • structure factor — struktūrinis faktorius statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, apibūdinantis kristalo vieno elementariojo narvelio gebėjimą koherentiškai sklaidyti rentgeno ir gama spinduliuotę, elektronus, neutronus; jo vertė… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • structure factor — sandaros faktorius statusas T sritis fizika atitikmenys: angl. structure factor vok. Strukturfaktor, m rus. структурный фактор, m pranc. facteur de structure, m; facteur structural, m …   Fizikos terminų žodynas

  • Dynamic structure factor — In condensed matter physics, the dynamic structure factor is a mathematical function that contains information about inter particle correlations and their time evolution. Experimentally, it can be accessed most directly by inelastic neutron… …   Wikipedia

  • intensity structure factor — intensyvumo sandaros faktorius statusas T sritis fizika atitikmenys: angl. intensity structure factor vok. Strukturintensitätsfaktor, m rus. структурный множитель интенсивности, m pranc. facteur de structure d’intensité, m …   Fizikos terminų žodynas

  • electron structure factor — elektroninis sandaros faktorius statusas T sritis fizika atitikmenys: angl. electron structure factor vok. elektronischer Strukturfaktor, m rus. электронный структурный фактор, m pranc. facteur de structure électronique, m …   Fizikos terminų žodynas

  • Factor analysis — is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved, uncorrelated variables called factors. In other words, it is possible, for example, that variations in …   Wikipedia

  • Structure specific recognition protein 1 — Structure specific recognition protein 1, also known as SSRP1, is a human protein.cite web | title = Entrez Gene: SSRP1 structure specific recognition protein 1| url = Cmd=ShowDetailView… …   Wikipedia

  • Factor de crecimiento insulínico tipo 1 — (somatomedina C) HUGO 5464 …   Wikipedia Español

  • Factor tisular — 100px Factor de coagulación III (factor tisular de tromboplastina) Identificadores Símbolo F3 Pfam …   Wikipedia Español

  • Structure of Intellect — ist eine 1967 veröffentlichte Theorie, die sich radikal gegen jegliche Hierarchie in der Strukturierung der Intelligenz stellt und vielmehr die Intelligenz als eine Zusammensetzung verschiedener „Cluster“ ansieht, die sich je aus drei Faktoren… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”