Edward Vermilye Huntington

Edward Vermilye Huntington

Edward Vermilye Huntington (April 26 1874, Clinton, New York, USA -- November 25 1952, Cambridge, Massachusetts, USA) was an American mathematician.

Edward Vermilye Huntington was awarded the B.A. and the M.A. by Harvard University in 1895 and 1897, respectively. After two years' teaching at Williams College, he began a doctorate at the University of Strasbourg, which was awarded in 1901. He then spent his entire career at Harvard, retiring in 1941. He taught in the engineering school, becoming Professor of Mechanics in 1919. Although Huntington's research was mainly in pure mathematics, he valued teaching mathematics to engineering students. He advocated mechanical calculators and had one in his office. He had an interest in statistics, unusual for the time, and worked on statistical problems for the USA military during World War I.

Huntington's primary research interest was the foundations of mathematics. He was one of the "American postulate theorists" (the term is Scanlan's), American mathematicians active early in the 20th century (including E. H. Moore and Oswald Veblen) who proposed axiom sets for a variety of mathematical systems. In so doing, they helped found what are now known as metamathematics and model theory.

Huntington was perhaps the most prolific of the American postulate theorists, devising sets of axioms (which he called "postulates") for groups, abelian groups, geometry, the real number field, and complex numbers. His 1902 axiomatization of the real numbers has been characterized as "one of the first successes of abstract mathematics" and as having "filled the last gap in the foundations of Euclidean geometry".cite book | page=49 | last=Smith | first=James T. | title=Methods of Geometry | publisher = John Wiley & Sons | year = 2000 | isbn=0471251836] Huntington excelled at proving axioms independent of each other by finding a sequence of models, each one which satisfying all but one of the axioms in a given set. His 1917 book "The Continuum and Other Types of Serial Order" was in its day a "...a widely read introduction to Cantorian set theory." (Scanlan 1999) Yet Huntington and the other American postulate theorists played no role in the rise of axiomatic set theory then taking place in continental Europe.

In 1904, Huntington put Boolean algebra on a sound axiomatic foundation. He revisited Boolean axiomatics in 1933, proving that Boolean algebra required but a single binary operation (denoted below by infix '+') that commutes and associates, and a single unary operation, complementation, denoted by a postfix prime. The only further axiom Boolean algebra requires is:

:("a" '+"b" ')'+("a" '+"b")' = "a",

now known as Huntington's axiom.

A method Huntington proposed for apportioning seats in the United States House of Representatives was adopted in 1941 and is still in effect.

In 1919, Huntington was the first President of the Mathematical Association of America, which he helped found. He was elected to the American Academy of Arts and Sciences in 1913, and to the American Philosophical Society in 1933.

References

* Scanlan, M., 1999, "Edward Vermilye Huntington," "American National Boography 11": 534-36. Oxford Univ. Press.

External links

* MacTutor biography: [http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Huntington.html Edward Vermilye Huntington]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Edward Vermilye Huntington — Saltar a navegación, búsqueda Edward Vermilye Huntington (26 de abril de 1874, Clinton, Nueva York, EE.UU. 25 de noviembre de 1952, Cambridge, Massachusetts, EE.UU.) fue un matemático estadounidense. Edward Vermilye Huntington recibió los grados… …   Wikipedia Español

  • Edward Vermilye Huntington — (* 26. April 1874 in Clinton, Oneida County, New York; † 25. November 1952 in Cambridge, Massachusetts) war ein US amerikanischer Mathematiker und Physiker. Huntington studierte an der Harvard University, wo er 1895 den B.A. und 1897 den M.A.… …   Deutsch Wikipedia

  • Huntington — ist der Familienname folgender Personen: Abel Huntington (1777−1858), US amerikanischer Politiker Anna Hyatt Huntington (1876−1973), US amerikanische Bildhauerin Arabella Huntington (1851−1924), US amerikanische Kunstmäzenin, Sammlerin und… …   Deutsch Wikipedia

  • Huntington — may refer to the following:People* Anna Hyatt Huntington, American sculptor * Arabella Huntington, wife of Collis Potter Huntington * Archer M. Huntington, scholar of Hispanic Studies * Benjamin Huntington, American jurist and politician *… …   Wikipedia

  • Huntington — El término Huntington puede referirse a las personas: Samuel Huntington (1731 1796), jurista estadounidense, Presidente del Congreso Continental y de la Asamblea del Congreso de los Estados Unidos; Samuel Phillips Huntington (1927 2008), profesor …   Wikipedia Español

  • Huntington-Hill — Das Hill Huntington Verfahren (auch: Divisorverfahren mit geometrischer Rundung) ist eine Methode der proportionalen Repräsentation (Sitzzuteilungsverfahren), wie sie z. B. bei Wahlen mit dem Verteilungsprinzip Proporz (siehe Verhältniswahl)… …   Deutsch Wikipedia

  • Huntington-Hill-Verfahren — Das Hill Huntington Verfahren (auch: Divisorverfahren mit geometrischer Rundung) ist eine Methode der proportionalen Repräsentation (Sitzzuteilungsverfahren), wie sie z. B. bei Wahlen mit dem Verteilungsprinzip Proporz (siehe Verhältniswahl)… …   Deutsch Wikipedia

  • Hill-Huntington — Das Hill Huntington Verfahren (auch: Divisorverfahren mit geometrischer Rundung) ist eine Methode der proportionalen Repräsentation (Sitzzuteilungsverfahren), wie sie z. B. bei Wahlen mit dem Verteilungsprinzip Proporz (siehe Verhältniswahl)… …   Deutsch Wikipedia

  • Hill-Huntington-Verfahren — Das Hill Huntington Verfahren (auch: Divisorverfahren mit geometrischer Rundung) ist eine Methode der proportionalen Repräsentation (Sitzzuteilungsverfahren), wie sie z. B. bei Wahlen mit dem Verteilungsprinzip Proporz (siehe Verhältniswahl) …   Deutsch Wikipedia

  • Boolean algebra (structure) — For an introduction to the subject, see Boolean algebra#Boolean algebras. For the elementary syntax and axiomatics of the subject, see Boolean algebra (logic). For an alternative presentation, see Boolean algebras canonically defined. In abstract …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”