Tessarine

Tessarine

The tessarines are a mathematical idea introduced by James Cockle in 1848. The concept includes both ordinary complex numbers and split-complex numbers. A tessarine "t" may be described as a 2 × 2 matrix

:egin{pmatrix} w & z \ z & wend{pmatrix},

where "w" and "z" can be any complex number.

Isomorphisms to other number systems

In general the tessarines form an algebra of dimension two over the complex numbers, isomorphic to the direct sum mathbf{C} oplus mathbf{C}.

Complex number

When "z" = 0, then "t" amounts to an ordinary complex number, which is "w" itself.

plit-complex number

When "w" and "z" are both real numbers, then we have an algebra of dimension two over the real numbers, isomorphic to the direct sum mathbf{R} oplus mathbf{R}: that is, "t" amounts to a split-complex number, "w" + j "z". The particular tessarine

:j = egin{pmatrix} 0 & 1 \ 1 & 0end{pmatrix}

has the property that its matrix product square is the identity matrix. This property led Cockle to call the tessarine j a "new imaginary in algebra". The commutative and associative ring of all tessarines also appears in the following forms:

Conic quaternion / octonion / sedenion, bicomplex number

When "w" and "z" are both complex numbers

: w :=~a + ib

: z :=~c + id

("a", "b", "c", "d" real) then "t" algebra is isomorphic to conic quaternions a + bi + c varepsilon + d i_0, to bases { 1,~i,~varepsilon ,~i_0 }, in the following identification:

: 1 equiv egin{pmatrix} 1 & 0 \ 0 & 1end{pmatrix} qquad i equiv egin{pmatrix} i & 0 \ 0 & iend{pmatrix} qquad varepsilon equiv egin{pmatrix} 0 & 1 \ 1 & 0end{pmatrix} qquad i_0 equiv egin{pmatrix} 0 & i \ i & 0end{pmatrix}

They are also isomorphic to bicomplex numbers (from multicomplex numbers) to bases { 1,~i_1, i_2, j } if one identifies:

:1 equiv egin{pmatrix} 1 & 0 \ 0 & 1end{pmatrix} qquad i_1 equiv egin{pmatrix} i & 0 \ 0 & iend{pmatrix} qquad i_2 equiv egin{pmatrix} 0 & i \ i & 0end{pmatrix} qquad j equiv egin{pmatrix} 0 & -1 \ -1 & 0end{pmatrix}

Note that "j" in bicomplex numbers is identified with the opposite sign as "j" from above.

When "w" and "z" are both quaternions (to bases { 1,~i_1,~i_2,~i_3 }), then "t" algebra is isomorphic to conic octonions; allowing octonions for "w" and "z" (to bases { 1,~i_1, dots, ~i_7 }) the resulting algebra is identical to conic sedenions.

elect algebraic properties

Tessarines with "w" and "z" complex numbers form a commutative and associative quaternionic ring (whereas quaternions are not commutative). They allow for powers, roots, and logarithms of j equiv varepsilon, which is a non-real root of 1 (see conic quaternions for examples and references). They do not form a field because the idempotents

: egin{pmatrix} z & pm z \ pm z & z end{pmatrix} equiv z (1 pm j) equiv z (1 pm varepsilon)

have determinant / modulus 0 and therefore cannot be inverted multiplicatively. In addition, the arithmetic contains zero divisors

: egin{pmatrix} z & z \ z & z end{pmatrix} egin{pmatrix} z & -z \ -z & z end{pmatrix}equiv z^2 (1 + j )(1 - j)equiv z^2 (1 + varepsilon )(1 - varepsilon) = 0.

In contrast, the quaternions form a skew field without zero-divisors, and can also be represented in 2×2 matrix form.

References

* James Cockle in London-Dublin-Edinburgh Philosophical Magazine, series 3
** 1848 On Certain Functions Resembling Quaternions and on a New Imaginary in Algebra, 33:435–9.
** 1849 On a New Imaginary in Algebra 34:37–47.
** 1849 On the Symbols of Algebra and on the Theory of Tessarines 34:406–10.
** 1850 On Impossible Equations, on Impossible Quantities and on Tessarines 37:281–3.
** 1850 On the True Amplitude of a Tessarine 38:290–2.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Tessarine — En mathématiques, les tessarines sont une idée introduite par James Cockle en 1848. La notion inclut à la fois les nombres complexes ordinaires et les nombres complexes déployés. Une tessarine t peut être décrite comme une matrice 2 x 2 , où w et …   Wikipédia en Français

  • Motor variable — A function of a motor variable is a function with arguments and values in the split complex number plane, much as functions of a complex variable involve ordinary complex numbers. The split complex numbers lie in the motor plane D, a term… …   Wikipedia

  • Hypercomplexe — Nombre hypercomplexe En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand… …   Wikipédia en Français

  • Hypercomplexes — Nombre hypercomplexe En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand… …   Wikipédia en Français

  • Nombre Hypercomplexe — En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans… …   Wikipédia en Français

  • Nombre hypercomplexe — En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans… …   Wikipédia en Français

  • Nombres hypercomplexes — Nombre hypercomplexe En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand… …   Wikipédia en Français

  • Hypercomplex number — The term hypercomplex number has been used in mathematics for the elements of algebras that extend or go beyond complex number arithmetic.Hypercomplex numbers have had a long lineage of devotees including Hermann Hankel, Georg Frobenius, Eduard… …   Wikipedia

  • Бикватернион — Бикватернионы комплексификация (расширение) обычных (вещественных) кватернионов. Содержание …   Википедия

  • Imaginary number — In mathematics, an imaginary number (or purely imaginary number) is a complex number whose squared value is a real number not greater than zero.Ahlfors, Lars V. Complex Analysis. 3rd Ed. New York: McGraw Hill, 1979. Pages 1 4.] The imaginary unit …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”