Holomorphic vector bundle

Holomorphic vector bundle

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold "X" such that the total space "E" is complex manifold and the projection map pi:E o X is holomorphic.

Specifically, one requires that the trivialization maps:phi_Ucolon pi^{-1}(U) o U imesmathbb C^kare biholomorphic maps. This is equivalent to requiring that the transition functions:t_{UV}colon Ucap V o mathrm{GL}_kmathbb Care holomorphic maps.

A holomorphic line bundle is a rank one holomorphic vector bundle.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Vector bundle — The Möbius strip is a line bundle over the 1 sphere S1. Locally around every point in S1, it looks like U × R, but the total bundle is different from S1 × R (which is a cylinder instead). In mathematics, a vector bundle is a… …   Wikipedia

  • Stable vector bundle — In mathematics, a stable vector bundle is a vector bundle that is stable in the sense of geometric invariant theory. They were defined by harvtxt|Mumford|1963table vector bundles over curvesA bundle W over an algebraic curve (or over a Riemann… …   Wikipedia

  • Vector bundles on algebraic curves — In mathematics, vector bundles on algebraic curves may be studied as holomorphic vector bundles on compact Riemann surfaces. which is the classical approach, or as locally free sheaves on algebraic curves C in a more general, algebraic setting… …   Wikipedia

  • Ample line bundle — In algebraic geometry, a very ample line bundle is one with enough global sections to set up an embedding of its base variety or manifold M into projective space. An ample line bundle is one such that some positive power is very ample. Globally… …   Wikipedia

  • Line bundle — In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising… …   Wikipedia

  • Canonical bundle — In mathematics, the canonical bundle of a non singular algebraic variety V of dimension n is the line bundle which is the nth exterior power of the cotangent bundle Ω on V. Over the complex numbers, it is the determinant bundle of holomorphic n… …   Wikipedia

  • Hirzebruch–Riemann–Roch theorem — In mathematics, the Hirzebruch–Riemann–Roch theorem, named after Friedrich Hirzebruch, Bernhard Riemann, and Gustav Roch, is Hirzebruch s 1954 result contributing to the Riemann–Roch problem for complex algebraic varieties of all dimensions. It… …   Wikipedia

  • Coherent sheaf — In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a specific class of sheaves having particularly manageable properties closely linked to the geometrical properties of the underlying space …   Wikipedia

  • Dolbeault cohomology — In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault… …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”