- Solar core
The core of the
Sun is considered to extend from the center to about 0.2solar radius . It is the hottest part of theSolar System . It has a density of up to 150,000 kg/m³ (154 times the density ofwater on Earth) and a temperature of close to 15,000,000kelvin (by contrast, the surface of the Sun is close to 6,000 kelvin).Energy production
Energy is produced by
exothermic thermonuclear reactions (nuclear fusion ) that mainly converthydrogen intohelium . The core is the only location in the Sun that produces an appreciable amount ofheat via fusion: the rest of the star is heated by energy that is transferred outward from the core. All of the energy produced by fusion in the core must travel through many successive layers to the solar photosphere before it escapes into space assunlight orkinetic energy of particles.tatistics
About 3.6 e|38
proton s (hydrogen nuclei) are converted into helium nuclei every second, releasing energy at the matter-energy conversion rate of 4.3 million tonnes per second, 380 yottawatts (3.8 e|26watt s), equivalent to 9.1 e|10megaton s of TNT per second. The rate of nuclear fusion depends strongly on density, so the fusion rate in the core is in a self-correcting equilibrium: a slightly higher rate of fusion would cause the core to heat up more and expand slightly against theweight of the outer layers, reducing the fusion rate and correcting the ; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the fusion rate and again reverting it to its present level.Energy transfer
The high-energy
photon s (gamma ray s andx-ray s) released in fusion reactions take a long time to reach the Sun's surface, slowed down by the indirect path taken, as well as by constant absorption and reemission at lower energies in the solar mantle. Estimates of the "photon travel time" range from as much as 50 million yearscite book| last=Lewis| first=Richard| year=1983| title=The Illustrated Encyclopedia of the Universe| publisher=Harmony Books, New York| pages=65] to as little as 17,000 years.cite web| url=http://www.badastronomy.com/bitesize/solar_system/sun.html| first=Phil| last=Plait| publisher=Bad Astronomy| title=Bitesize Tour of the Solar System: The Long Climb from the Sun's Core| year=1997| accessdate=2006-03-22] After a final trip through the convective outer layer to the transparent "surface" of thephotosphere , the photons escape asvisible light . Each gamma ray in the Sun's core is converted into several million visible light photons before escaping into space.Neutrino s are also released by the fusion reactions in the core, but unlike photons they very rarely interact with matter, so almost all are able to escape the Sun immediately. For many years measurements of the number of neutrinos produced in the Sun were much lower than theories predicted, a problem which was recently resolved through a better understanding of the effects ofneutrino oscillation .References
Wikimedia Foundation. 2010.